Difference between revisions of "Laser Cooling of Complex Polyatomics"

From DoyleGroup
Jump to: navigation, search
(We are looking for interested students to join this experiment)
(References)
Line 61: Line 61:
 
#Wall et al.  [http://iopscience.iop.org/article/10.1088/1367-2630/17/2/025001/meta New J. Phys. 17 025001 (2015)]
 
#Wall et al.  [http://iopscience.iop.org/article/10.1088/1367-2630/17/2/025001/meta New J. Phys. 17 025001 (2015)]
 
#Tesch et al. [http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.89.157901 Phys. Rev. Lett. 89 157901 (2002)]
 
#Tesch et al. [http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.89.157901 Phys. Rev. Lett. 89 157901 (2002)]
#Kozlov M 2013 Phys. Rev. A 87 032104
+
#Kozlov [http://journals.aps.org/pra/abstract/10.1103/PhysRevA.87.032104 Phys. Rev. A 87 032104 (2013)]
#Kozlov M G and Levshakov S A 2013 Ann. Phys. 525 452
+
#Kozlov et al. [http://onlinelibrary.wiley.com/doi/10.1002/andp.201300010/full Ann. Phys. 525 452 2013]
#Sabbah H, Biennier L, Sims I R, Georgievskii Y, Klippenstein S J and Smith I W 2007 Science 317 102
+
#Sabbah et al. [http://science.sciencemag.org/content/317/5834/102 Science 317 102 (2007)]
#Quack M, Stohner J and Willeke M 2008 Annu. Rev. Phys. Chem. 59 741
+
#Quack et al. [http://www.annualreviews.org/doi/abs/10.1146/annurev.physchem.58.032806.104511 Annu. Rev. Phys. Chem. 59 741 (2008)]
#Quack M 2002 Angew. Chem. Int. Ed. 41 4618
+
#Quack [http://onlinelibrary.wiley.com/doi/10.1002/anie.200290005/abstract Angew. Chem. Int. Ed. 41 4618 (2002)]
#N. R. Hutzler, H.-I Lu, and J. M. Doyle, '''The Buffer Gas Beam: An Intense, Cold, and Slow Source for Atoms and Molecules''', [http://dx.doi.org/10.1021/cr200362u Chem. Rev., 112, 4803 (2012)]
+
#Hutzler et al. [http://dx.doi.org/10.1021/cr200362u Chem. Rev., 112, 4803 (2012)]
#H.-I Lu, J. Rasmussen, M. J. Wright, D. Patterson, and J. M. Doyle, '''A cold and slow molecular beam''', [http://dx.doi.org/10.1039/c1cp21206k Phys. Chem. Chem. Phys. 13, 18986 (2011)]
+
#Lu et al. [http://dx.doi.org/10.1039/c1cp21206k Phys. Chem. Chem. Phys. 13, 18986 (2011)]
#D. Patterson and J. M. Doyle, '''Bright, Guided, molecular beam with hydrodynamic enhancement''', [http://dx.doi.org/10.1063/1.2717178 J. Chem. Phys. 126, 154307 (2007)]
+
#Patterson et al. [http://dx.doi.org/10.1063/1.2717178 J. Chem. Phys. 126, 154307 (2007)]
#E. S. Shuman, J. F. Barry, D. R. Glenn, and D. DeMille, '''Radiative Force from Optical Cycling on a Diatomic Molecule''', [http://dx.doi.org/10.1103/PhysRevLett.103.223001 Phys. Rev. Lett. 103, 223001 (2009)]
+
#Shuman et al. [http://dx.doi.org/10.1103/PhysRevLett.103.223001 Phys. Rev. Lett. 103, 223001 (2009)]
#E. S. Shuman, J. F. Barry, and D. DeMille, '''Laser cooling of a diatomic molecule''', [http://dx.doi.org/10.1038/nature09443 Nature 467, 820 (2010)]
+
#Shuman et al. [http://dx.doi.org/10.1038/nature09443 Nature 467, 820 (2010)]
#M. T. Hummon, M. Yeo, B. K. Stuhl, A. L. Collopy, Y. Xia, and J. Ye, '''2D Magneto-Optical Trapping of Diatomic Molecules''', [http://dx.doi.org/10.1103/PhysRevLett.110.143001 Phys. Rev. Lett. 110, 143001 (2013)]
+
#Hummon et al. [http://dx.doi.org/10.1103/PhysRevLett.110.143001 Phys. Rev. Lett. 110, 143001 (2013)]
#M. Harvey, A. J. Murray, '''Cold Atom Trap with Zero Residual Magnetic Field: The ac Magneto-Optical Trap ''', [http://dx.doi.org/10.1103/PhysRevLett.101.173201 Phys. Rev. Lett. 101, 173201 (2008)]
+
#Harvey et al. [http://dx.doi.org/10.1103/PhysRevLett.101.173201 Phys. Rev. Lett. 101, 173201 (2008)]
#V. Zhelyazkova, A. Cournol, T. E. Wall, A. Matsushima, J. J. Hudson, E. A. Hinds, M. R. Tarbutt, and B. E. Sauer, '''Laser cooling and slowing of CaF molecules ''', [http://dx.doi.org/10.1103/PhysRevA.89.053416 Phys. Rev. A. 89, 053416 (2014)]
+
#Zhelyazkova et al. [http://dx.doi.org/10.1103/PhysRevA.89.053416 Phys. Rev. A. 89, 053416 (2014)]
#J. F. Barry, D. J. McCarron, E. B. Norrgard, M. H. Steinecker, and D. DeMille, '''Magneto-optical trapping of a diatomic molecule''', [http://dx.doi.org/10.1038/nature13634 Nature 512, 286 (2014)]
+
#Barry et al. [http://dx.doi.org/10.1038/nature13634 Nature 512, 286 (2014)]
#D. J. McCarron, E. B. Norrgard, M. H. Steinecker, D. DeMille, '''Improved magneto-optical trapping of a diatomic molecule''', [http://dx.doi.org/10.1088/1367-2630/17/3/035014  New J. Phys. 17, 035014 (2015)]
+
#McCarron et al. [http://dx.doi.org/10.1088/1367-2630/17/3/035014  New J. Phys. 17, 035014 (2015)]
 
#M. Yeo, M. T. Hummon, A. L. Collopy, B. Yan, B. Hemmerling, E. Chae, J. M. Doyle, J. Ye, '''Rotational state microwave mixing for laser cooling of complex diatomic molecules''', [http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.223003 Phys. Rev. Lett. 114, 223003 (2015)]
 
#M. Yeo, M. T. Hummon, A. L. Collopy, B. Yan, B. Hemmerling, E. Chae, J. M. Doyle, J. Ye, '''Rotational state microwave mixing for laser cooling of complex diatomic molecules''', [http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.223003 Phys. Rev. Lett. 114, 223003 (2015)]
 
#E. B. Norrgard, D. J. McCarron, M. H. Steinecker, M. R. Tarbutt, and D. DeMille, '''Submillikelvin Dipolar Molecules in a Radio-Frequency Magneto-Optical Trap''', [http://dx.doi.org/10.1103/PhysRevLett.116.063004 Phys. Rev. Lett. 116, 063004 (2016)]
 
#E. B. Norrgard, D. J. McCarron, M. H. Steinecker, M. R. Tarbutt, and D. DeMille, '''Submillikelvin Dipolar Molecules in a Radio-Frequency Magneto-Optical Trap''', [http://dx.doi.org/10.1103/PhysRevLett.116.063004 Phys. Rev. Lett. 116, 063004 (2016)]
 
#B. Hemmerling, E. Chae, A. Ravi, L. Anderegg, G. K. Drayna, N. R. Hutzler, A. L. Collopy, J. Ye, W. Ketterle and J. M. Doyle, '''Laser slowing of CaF molecules to near the capture velocity of a molecular MOT''', [http://arxiv.org/abs/1603.02787 arXiv:1603.02787]
 
#B. Hemmerling, E. Chae, A. Ravi, L. Anderegg, G. K. Drayna, N. R. Hutzler, A. L. Collopy, J. Ye, W. Ketterle and J. M. Doyle, '''Laser slowing of CaF molecules to near the capture velocity of a molecular MOT''', [http://arxiv.org/abs/1603.02787 arXiv:1603.02787]

Revision as of 13:42, 28 October 2016

Research Overview

The goal of this experiment is to develop techniques to bring polyatomic molecules into the ultracold regime using direct cooling. The use of laser radiation to control and cool external and internal degrees of freedom has revolutionized atomic, molecular, and optical physics. The powerful techniques of laser cooling and trapping using light scattering forces for atoms led to breakthroughs in both fundamental and applied sciences, including detailed studies of diverse degenerate quantum gases [1,2], creation of novel frequency standards [3], and precision measurements of fundamental constants [4,5]. Polyatomic molecules are more difficult to manipulate than atoms and diatomic molecules because they possess additional rotational and vibrational degrees of freedom. Partially because of their increased complexity, cold dense samples of molecules with three or more atoms offer unique capabilities for exploring interdisciplinary frontiers in physics, chemistry and even biology. Precise control over polyatomic molecules could lead to applications in astrophysics [6], quantum simulation [7] and computation [8], fundamental physics [9,10], and chemistry [11]. Study of parity violation in biomolecular chirality [12]—which plays a fundamental role in molecular biology [13]—necessarily requires polyatomic molecules.


Our approach starts with buffer gas cooling[14-16], a technique that dramatically reduces the number of internal rotational and vibrational states by thermalizing a sample of molecules with He gas at ~1K. This initial cooling step is critical for working with molecules to limit the number of quantum states that have significant population. We are now working to adapt the laser cooling techniques that were so successful with atoms to work on molecular samples. While atomic species have selection rules that limit the number of states populated by spontaneous decay, Molecules have selection rules for electronic and rotational degrees of freedom but not vibrational degrees of freedom. Therefore, the major complication with molecules is branching to higher vibrational states outside of the cycling transition.


Motivated the recent success laser cooling and magneto-optical trapping diatomic molecules [16-26] and with insights gained in efforts underway in our own lab we have successfully extended sub-Doppler cooling techniques to polyatomic molecules.


We are currently pushing in two directions :

  1. Extension of the bichromatic force to molecules. The bichromatic force relies on coherent control of molecular populations to exert a force on the molecules without scattering photons. This could have dramatic results for laser cooling of molecules because it could dramatically limit branching to higher vibrational states.
  2. Extension of laser cooling to larger molecules. We have demonstrated that magnetically induced Sisyphus cooling works for SrOH, but increasing the size of the molecule and thus the complexity

People

We are looking for interested students to join this experiment

Please contact one of the graduate students for more information.

Grad Students

  • Ivan Kozyryev
  • Louis Baum


Undergrads

  • Alex Sedlack


Former Students and Postdocs

  • Boerge Hemmerling - Now a postdoc working with Prof Haffner at UC Berkeley
  • Kyle Matsuda - Now a grad student University of Colorado
  • Peter Olson - Now a undergraduate at Washington University

Latest News

Proposal to Extend Laser Cooling to MOR molecules

Our proposal to extend laser cooling to MOR molecules has been accepted for publication in the special issue of Chem Phys Chem. Our work on SrOH has brought our attention to a class of larger molecules that also possess electronic transitions with short lifetimes and diagonal Franck-Condon factors which make them amenable to laser cooling.

Magnetically Assisted Sisyphus Laser Cooling of SrOH on arXiv

Our work on Sisyphus Laser Cooling of SrOH has been submitted to PRL. The preprint is available at arXiv:1603.02787. This demonstrates that dramatic cooling of molecular samples is possible with relatively few scattered photons. 1 dimensional laser cooling is an important step towards 3 dimensional laser cooling.

Radiation pressure force demonstrated on SrOH

Our demonstration of Radiation pressure force on SrOH has been published in the Journal of Physics B. This is an important step on the road towards laser cooling of polyatomic SrOH.

References

  1. Greif et al. Science 351 953 (2016)
  2. Bakr et al. Science 329 547 (2016)
  3. Ludlow et al. Mod. Phys. Rev. 87 637 (2015)
  4. Fixler et al. Science 315 74 (2007)
  5. Cladé et al. Phys. Rev. Lett. 96 033001 (2006)
  6. Herbst et al.Annu. Rev. Astron. Astrophys. 47 427 (2009)
  7. Wall et al. New J. Phys. 17 025001 (2015)
  8. Tesch et al. Phys. Rev. Lett. 89 157901 (2002)
  9. Kozlov Phys. Rev. A 87 032104 (2013)
  10. Kozlov et al. Ann. Phys. 525 452 2013
  11. Sabbah et al. Science 317 102 (2007)
  12. Quack et al. Annu. Rev. Phys. Chem. 59 741 (2008)
  13. Quack Angew. Chem. Int. Ed. 41 4618 (2002)
  14. Hutzler et al. Chem. Rev., 112, 4803 (2012)
  15. Lu et al. Phys. Chem. Chem. Phys. 13, 18986 (2011)
  16. Patterson et al. J. Chem. Phys. 126, 154307 (2007)
  17. Shuman et al. Phys. Rev. Lett. 103, 223001 (2009)
  18. Shuman et al. Nature 467, 820 (2010)
  19. Hummon et al. Phys. Rev. Lett. 110, 143001 (2013)
  20. Harvey et al. Phys. Rev. Lett. 101, 173201 (2008)
  21. Zhelyazkova et al. Phys. Rev. A. 89, 053416 (2014)
  22. Barry et al. Nature 512, 286 (2014)
  23. McCarron et al. New J. Phys. 17, 035014 (2015)
  24. M. Yeo, M. T. Hummon, A. L. Collopy, B. Yan, B. Hemmerling, E. Chae, J. M. Doyle, J. Ye, Rotational state microwave mixing for laser cooling of complex diatomic molecules, Phys. Rev. Lett. 114, 223003 (2015)
  25. E. B. Norrgard, D. J. McCarron, M. H. Steinecker, M. R. Tarbutt, and D. DeMille, Submillikelvin Dipolar Molecules in a Radio-Frequency Magneto-Optical Trap, Phys. Rev. Lett. 116, 063004 (2016)
  26. B. Hemmerling, E. Chae, A. Ravi, L. Anderegg, G. K. Drayna, N. R. Hutzler, A. L. Collopy, J. Ye, W. Ketterle and J. M. Doyle, Laser slowing of CaF molecules to near the capture velocity of a molecular MOT, arXiv:1603.02787