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Questions that motivate us

Standard Model doesn’t tell us S‘l"ahc‘ara’ /V\odel
e What is dark matter?




Possible solutions
e What is dark matter? ¢ . ‘
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* Heavy particles that interact weakly o ‘ ‘ L

Questions that motivate

with known matter (WIMPs)? c0o O <® %%_if: \\\T)

* Why do we see more matter than antimatter in the universe?

[1] A. D. Sakharov, JETP Lett. 5, 27 (1967).
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with known matter (WIMPs)?
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* Why do we see more matter than antimatter in the universe?
e Assuming equal initial amounts of matter and antimatter
Sakharov!ll derived that CP violating processes are required
to explain this.

* This (assuming CPT invariance) implies T violating phases.
* The Standard Model does account for some T-violation
(CKM matrix), but not enough.

Possible solutions
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[1] A. D. Sakharov, JETP Lett. 5, 27 (1967).



Electric dipole moments and fundamental
symmetries

* Permanent EDMs of fundamental
particles violate T-symmetry.
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Electric dipole moments and fundamental
symmetries

* Permanent EDMs of fundamental
particles violate T-symmetry.

« EDMs are also not symmetric under
parity inversion.

[1] Purcell, E. & Ramsey, N., Phys. Rev., 78(6), 807 (1950)
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e Permanent EDMs of fundamental

particles violate T-symmetry.

« EDMs are also not symmetric under

parity inversion. T
* No permanent EDMs have yet been
observed, despite 60 years of
searching!ll.

[1] Purcell, E. & Ramsey, N., Phys. Rev., 78(6), 807 (1950)



EDMs and Physics beyond the standard model

t
f experimentally excluded

Imperial 20010 ACME

unconstrained

2013
Berkeley 2002 standard model
Multi- SUSY variants
E generic models
j.ift—nght Extended
Symmetric Technicolor
to Standard
Model
Alignment
Seesaw Neutrino Yukawa Couplings
idental Approx.  Approx. Exact
"""" ation CcpP Universality Universality
H
sFerfnions
- : bttt/ +—+>
1025 1026 107 10-28 10-2° 10-30 10-3 10-32 1032 1040 104

d, (ecm)

Typical scaling for eEDM Feynman
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CP violating phase
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Mass scale of new particles

EDM experiments sensitive to
~TeV mass scales at 2-loop,
complement LHC



How to Measure an EDM

Interaction time t
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How to Measure an EDM
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Advantages of ThO Molecule Th O

Thorium Oxygen
232.0381 15.9994

* Diatomic molecules have large internal electric [Rn]6d’7s” | 1s72s°2p°
fields:

* For us E_¢ =84 GV/cmlYl, 1/ACZ€ X ETV NT

* Three orders of magnitude larger than atoms.

Polarization of ThO H,J=1 in a Laboratory Electric Field

* Easily polarized
di »
* Lab fields of 10 V/cm fully align the molecule. ({\ %

* Spectroscopy available and optical transitions
accessible with standard robust diode and
fiber lasers.
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e Sufficient coherence time: 2 ms.
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Lab Electric Field [V/cm]
[1] L.V. Skripnikov, A.N.Petrov, A.V. Titov, arXiv:1308.0414 (2013)




Advantages of ThO Molecule

* H State - Omega doublet structure
e Allows us to reverse the internal electric field of the molecule

without switching the lab electric field A Q G
. Q1 doublet
by tuning our laser. . S switching
* Magnetically insensitive, reduces a ®
B field systematics Q @

* Magnetic moment is 0.004 ug

* Bright molecular beams
* Can make cold, slow, high flux beams

using buffer gas technique. 1/Ade x ETV NT



The Experimental Apparatus
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Pulse tube
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One of several optical tables w/ ~15
lasers, modulators, locking electronics,
fibers spanning across two buildings
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Phase Measurement Scheme

L=22cm
<€ >

X Electric field direction

\ \

Pump Prepare Read
Packet of molecules arriving from the Transparent
molecule source. We are running in conductive glass
pulsed mode (50 Hz). (ITO)



Populate experiment state (H)

L=22cm
<€ >

\\ " Electric field direction

Pump Prepare Read




Align spin

L=22cm

\1 X Electric field direction

N\

Pump Prepare Read

M=0

1090 nm




Spin precession

<€

L=22cm
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Pump Prepare

M=0
C
ei¢ ei®
M=-1__ M=+1
M=-1 M=+1

Read

X Electric field direction



Phase detection

L=22cm
<€ >
X Electric field direction
Pump Prepare Read x polarization
c M=0 Fluorescence
~ 1000 clicks
690 nm 1090 nm oC sin2(¢)




Phase detection

L=22cm
<€ >
X Electric field direction
Pump Prepare Read y polarization
c M=0 Fluorescence
~ 1000 clicks
690 nm 1090 nm oc cos(0)
H




Systematic Study: E_

* Ellipticity profile caused by thermal
stress in E-field plates
* |ITO absorption = Heat

* Heat = Stress
* Stress = Birefringence

* Varying ellipticity across the laser

wavefront
* Dark state acquires bright component

* Bright component acquires light shift
* Ellipticity = M=%1 differentially shifted
e Just a light shift shouldn’t cause a false
EDM...

city

Ellipti

Position [mm]

OO0 0 t t O 0 Elipticity

Intensity



Correlated Detuning

* A non-reversing E-field (E, ) leads to
detuning
0 oc sgn(N)sgn(&)
* Non-reversing electric field means “+E”
# “—E”
* Same parity as EDM

* Couples to linear light shift to cause a
false EDM

dy|E|

0>0

dylE|

0<0

Lower State

Upper State



Solutions

e Can’t do anything about
patch potentials, but we
can suppress light shift

* Align laser polarizations
along optical axes

* Use chopper wheel to
reduce heat load

e Shape beams to have sharp
cutoff in Ramsey region

* We suppress the effect by
a factor of ~100

* Next-generation field plates
should give another ~100

laser polarization
== aligned
05k == Misaligned

X

=190 =100 =50 0 50 100 150
applied €™ (mV /cm)



GEN | result >
* Measured d,=(-2.1£3.7,,,#2.5_ ) x 10%° e cm. SClen e

* Consistent with 0!
|d.| <8.7 x10%° e cm (90 % Confidence).

17 Jasgary 2008 ' 599

Parameter Shift  Uncertainty
EMT correction —0.81 0.66
V€ correction —0.03 1.58 {0/ ROUND IS T4 ELECTRON?
o% correlated effects —0.01 0.01

&N correlation 1.25
Non-Reversing B-field (BY") 0.86
Transverse B-fields (B3, By") 0.85
B-Field Gradients 1.24
Prep./Read Laser Detunings 1.31

N Correlated Detuning 0.90
E-field Ground Offset 0.16
Total Systematic —0.85 3.24
Statistical 4.80

AYAAAS

Total Uncertainty 5.79




Present and future: GEN | elevant

512 nm 1090 nm
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1. STIRAP state preparation &

* Currently, state preparation using

GEN |

incoherent optical pumping is ~6% efficient.

xX 1



1. STIRAP state preparation A o

* Currently, state preparation using

943 nm

0+. c

GEN |

incoherent optical pumping is ~6% efficient.

|

e STIRAP can coherently transfer population
into the desired state superposition with
close to 100% efficiency.

xX 1

GEN I




STIRAP in ThO

* Well understood and established technique —
STIRAP in molecular beam done by Klaas Bergmann

25 years ago in Na,.
* Robust, reliable, have to be able to run many hours a day for months.

* But...

* ThO transitions not strong (d,,.=0.01 ea0) -> Need lots of intensity ->More
power or focus more

* Two photons almost a factor of two in frequency apart (690 and 1090 nm),
large transversal Doppler velocity distribution (1 m/s) -> large Doppler two
photon detunings ->Even more intensity to saturate

* Large diameter of the molecular beam to be addressed (25 mm), 5 layers of
mu metal shielding, robust vacuum chamber, field plates -> Laser
beamshaping might not be trivial.

0 el X



Narrow laser system

e Lasers locked to ULE cavities for linewidth
reduction.

* Frequency comb used for absolute frequency
reference.

To wavemeter, g Toexperiment
frequency comb ™

Laser Faraday 3 % Dﬂugghfass 8
|solator 2 EOM RBW = 30 Hz
o\~ —W (= HH ﬂ VBW = 30 He
N ALt x i Sweep = 583 ms |
Curren Piezo 10 MHz = 5 ~ 6
Monitor §,
Transmission % < A
ULE Cavity B /
‘ —
Wi | - = WHM = 308 Hz
< 5l
CCD Camera ”
S'”“' 8 MHz Novatech RF Generator

FE'ST Toptica Digilock J z 9'5 10 05 0 05

Frequency (kHz)




Vertical access for STIRAP

* Vertical STIRAP beams to avoid shining
high intensity lasers on the ITO field plates.

e Laser beamshaping and relative pointing
alignment vital to ensure optimal overlap
across the molecular beam.

Vertical section through the interaction region

Bottom window Top window 690 J=0from TA

aspheric lens

690 J=2 from TA

Cylindrical lens
for horizontal =30

' 2" 50/50 BS
y Cylindrical lens

Beam proﬂler. for horizontal f=300



Laser phase noise decreases transfer efficiency

* Two photon linewidth of ~2 MHz.

* ECDL phase noise outside of the two photon Noisy

-~ Laser
linewidth decoheres the STIRAP process and - o€
populates the bright state.

* Population remains in initial state or decays
away. Observed initial transfer rates of ¥35%.

0

Improved

-2 -1 0 1| 2

Frequency(MHz)

* Narrower, quieter lasers alleviate problems.

So=0.15mm, Ar=0.45mn m/s, §=-0.11MHz, A=0.85MHz
1.80MHz, ¢e =0, 2rac

0,200, £—50V fem, 8 /13523007 65M 1Lz, lobes—0.25 PHYSICAL REVIEW A 89, 013831 (2014)
1 F —— T T T T
g . . . . . .
o9 I A b Detrimental consequences of small rapid laser fluctuations on stimulated Raman adiabatic passage
0.8
07l ! ’ L. P. Yatsenko™
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Efficient rotational cooling S
and future

 Tests with transferring population
between rotational levels completed

successfully.
 Observed transfer efficiencies of ~90%!

100

* Transfer to experiment state (H state)
STIRAP tests are now underway. 80

60

—_—

40

Efficiency (%)

20

I ] 0

-150

-100

-50
Beam dispacement (um)

50



2. Thermochemical beam source

* Chemically favorable reaction (2000K):
e Th(s)+ThO2(s)-> 2ThO (g)



2. Thermochemical beam source

* Chemically favorable reaction (2000K):
e Th(s)+Th02(s)-> 2ThO (g)

Thermochemical Cell

Th +ThO,

Neon flow

16K Cell




2. Thermochemical beam source

* Chemically favorable reaction (2000K):
e Th(s)+Th02(s)-> 2ThO (g)

e Currently working on characterization, optimization.

Thermochemical Cell

Run over 1 day, 50 Hz, 10 ms pulse, 20 W
13 Avg Flux = 7 e+13 Mol/sec
Th +ThO, %10 g
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3. Improved experiment geometry

* Molecular beam divergence is 45°
FWHM, so only 1 in 10° of
produced molecules reaches probe ee®
area

Field plates
¥  Detected ThO




3. Improved experiment geometry

* Molecular beam divergence is 45°
FWHM, so only 1 in 10° of

produced molecules reaches probe ee®
area Field plates
. B Detected ThO
* Shorten beamline by a factor of »

~1.2 and increase detection region
by a factor of ~2.5 to enhance
captured solid angle

* Gain ~6-8



4. Readout/collection efficiency i

iImprovements Relevant — # __
Electronic 7
. T .t. 513 nm 1090 nm
e | state has two benefits: ranstiions ¥

S 690nm  98%3A H

 Eliminate light contamination from STIRAP/probing . Y
at the same wavelength (690 nm).
* Gain of 2.5 in PMT quantum efficiency at shorter wavelength.




4. Readout/collection efficiency Fat

iImprovements Relevant — # __
Electronic 7
. T .t. 51.3 nm 1090 nm
e | state has two benefits: ransttons ¥

& 690nm 98%3A H

* Eliminate light contamination from STIRAP/probing . £ Y
at the same wavelength (690 nm). o= et
e Gain of 2.5 in PMT quantum efficiency at shorter wavelength. & \’7'}

e Switching from using fiber bundles to bent lightpipes
eliminates fiber bundles packing fraction loss.

o
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