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• What is dark matter?
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Questions that motivate

• What is dark matter?
• Heavy particles that interact weakly 

with known matter (WIMPs)?

• Why do we see more matter than antimatter in the universe?

[1] A. D. Sakharov, JETP Lett. 5, 27 (1967).



Possible solutions

• What is dark matter?
• Heavy particles that interact weakly 

with known matter (WIMPs)?

• Why do we see more matter than antimatter in the universe?
• Assuming equal initial amounts of matter and antimatter

Sakharov[1] derived that CP violating processes are required

to explain this.

• This (assuming CPT invariance) implies T violating phases.

• The Standard Model does account for some T-violation 

(CKM matrix), but not enough.

[1] A. D. Sakharov, JETP Lett. 5, 27 (1967).



Electric dipole moments and fundamental 
symmetries

• Permanent EDMs of fundamental 

particles violate T-symmetry.
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Electric dipole moments and fundamental 
symmetries

• Permanent EDMs of fundamental 

particles violate T-symmetry.

• EDMs are also not symmetric under 

parity inversion.
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[1] Purcell, E. & Ramsey, N., Phys. Rev., 78(6), 807 (1950)



Electric dipole moments and fundamental 
symmetries

• Permanent EDMs of fundamental 

particles violate T-symmetry.

• EDMs are also not symmetric under 

parity inversion.

• No permanent EDMs have yet been

observed, despite 60 years of 

searching[1].
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EDMs and Physics beyond the standard model

Typical scaling for eEDM Feynman 
diagrams (n-loop):

Mass scale of new particles

Coupling constant 
(assume g ~0.1)

CP violating phase 
(assume ~0.1-1)

EDM experiments sensitive to 
~TeV mass scales at 2-loop , 
complement LHC



How to Measure an EDM

𝝓 = 0

Interaction time 

B

E=  B  dE

𝝓+ = (B + dE)E



How to Measure an EDM

𝝓 = 0

Interaction time 

B

𝝓 = 0

Interaction time 

E=  B  dE

𝝓+ = (B + dE)

B E

E

𝝓 - =(B – dE)
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Advantages of ThO Molecule

• Diatomic molecules have large internal electric 
fields:
• For us Eeff = 84 GV/cm[1].

• Three orders of magnitude larger than atoms.

• Easily polarized
• Lab fields of 10 V/cm fully align the molecule.

• Spectroscopy available and optical transitions 
accessible with standard robust diode and 
fiber lasers.

• Sufficient coherence time: 2 ms.


[1] L.V. Skripnikov, A.N.Petrov, A.V. Titov, arXiv:1308.0414 (2013)



Advantages of ThO Molecule
• H State - Omega doublet structure

• Allows us to reverse the internal electric field of the molecule 

without switching the lab electric field 

by tuning our laser.

• Magnetically insensitive, reduces
B field systematics
• Magnetic moment is 0.004 𝜇𝐵.

• Bright molecular beams
• Can make cold, slow, high flux beams 

using buffer gas technique.

Elab












Ω doublet 
switching



The Experimental Apparatus 



Prep Lasers

Probe Lasers

Pulse tube
Cryo
refrigerator

ThO Buffer 
Gas Beam 
source

Laser fiber 
amplifier 
(10 Watt)

5 layers of 
mu-Metal 
shields



“control room”
One of several optical tables w/ ~15 

lasers, modulators, locking electronics, 
fibers spanning across two buildings



GEN I experiment



Phase Measurement Scheme

Prepare Read

Packet of molecules arriving from the 
molecule source. We are running in 
pulsed mode (50 Hz).

L = 22 cm

Transparent 
conductive glass 
(ITO)

Electric field direction

Pump



Populate experiment state (H)
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Align spin
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Spin precession

Prepare Read
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Phase detection

Prepare Read x polarization

L = 22 cm

Electric field direction

Pump

X
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Fluorescence
~ 1000 clicks
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Phase detection

Prepare Read y polarization

L = 22 cm

Electric field direction

Pump

X
H

M=-1          M=+1

M=-1          M=+1

C
M=0

1090 nm690 nm

Fluorescence
~ 1000 clicks

 cos2()



Systematic Study: Enr
• Ellipticity profile caused by thermal 

stress in E-field plates
• ITO absorption  Heat

• Heat  Stress

• Stress  Birefringence

• Varying ellipticity across the laser 
wavefront
• Dark state acquires bright component

• Bright component acquires light shift

• EllipticityM=±1 differentially shifted

• Just a light shift shouldn’t cause a false 
EDM…
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Correlated Detuning

“+E”

“– E”

dH|E|dH|E|

>0

<0

<0

>0

• A non-reversing E-field (Enr) leads to 
detuning 
  sgn(N)sgn(E)
• Non-reversing electric field means “+E” 
 “–E”

• Same parity as EDM

• Couples to linear light shift to cause a 
false EDM

Lower State                 Upper State



Solutions

• Can’t do anything about 
patch potentials, but we 
can suppress light shift
• Align laser polarizations 

along optical axes

• Use chopper wheel to 
reduce heat load

• Shape beams to have sharp 
cutoff in Ramsey region

• We suppress the effect by 
a factor of ~100
• Next-generation field plates 

should give another ~100



GEN I result
• Measured de=(-2.1±3.7stat±2.5syst) x 10-29 e cm.

• Consistent with 0!

|de| < 8.7 × 10-29 e cm (90 % Confidence).



Present and future: GEN II

2. Thermochemical
beam source (up to x10)

3. Geometric 
Improvements (x7)

1. STIRAP state preparation (up to x17)
4. Readout/collection 
improvements( x4)
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• Currently, state preparation using 

incoherent optical pumping is ~6% efficient. G
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1. STIRAP state preparation

• Currently, state preparation using 

incoherent optical pumping is ~6% efficient.

• STIRAP can coherently transfer population 
into the desired state superposition with 
close to 100% efficiency.
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STIRAP in ThO

• Well understood and established technique –

STIRAP in molecular beam done by Klaas Bergmann

25 years ago in Na2.
• Robust, reliable, have to be able to run many hours a day for months.

• But…
• ThO transitions not strong (dHC=0.01 ea0) -> Need lots of intensity ->More 

power or focus more 
• Two photons almost a factor of two in frequency apart (690 and 1090 nm), 

large transversal Doppler velocity distribution (1 m/s) -> large Doppler two 
photon detunings ->Even more intensity to saturate

• Large diameter of the molecular beam to be addressed (25 mm), 5 layers of 
mu metal shielding, robust vacuum chamber, field plates -> Laser 
beamshaping might not be trivial.



Narrow laser system
• Lasers locked to ULE cavities for linewidth

reduction.

• Frequency comb used for absolute frequency 
reference.



Vertical access for STIRAP

• Vertical STIRAP beams to avoid shining 
high intensity lasers on the ITO field plates.

• Laser beamshaping and relative pointing 
alignment vital to ensure optimal overlap 
across the molecular beam.



Laser phase noise decreases transfer efficiency
• Two photon linewidth of ~2 MHz.

• ECDL phase noise outside of the two photon 
linewidth decoheres the STIRAP process and 
populates the bright state.

• Population remains in initial state or decays 
away. Observed initial transfer rates of ~35%.

• Narrower, quieter lasers alleviate problems.

Noisy 
Laser

Improved
noise profile



Efficient rotational cooling STIRAP 
and future 
• Tests with transferring population 

between rotational levels completed 
successfully.

• Observed transfer efficiencies of ~90%!

• Transfer to experiment state (H state) 
STIRAP tests are now underway.



2. Thermochemical beam source

• Chemically favorable reaction (2000K):
• Th(s)+ThO2(s)-> 2ThO (g)
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2. Thermochemical beam source

7

ThO

16K Cell

C
W

 Laser

Th + ThO2

Neon flow

Thermochemical Cell

Typ. ablation 
yield: 5 e+12 

Mol/sec

• Chemically favorable reaction (2000K):
• Th(s)+ThO2(s)-> 2ThO (g)

• Currently working on characterization, optimization.



3. Improved experiment geometry

• Molecular beam divergence is 45⁰ 
FWHM, so only 1 in 105 of 
produced molecules reaches probe 
area

• Shorten beamline by a factor of 
~1.2 and increase detection region 
by a factor of ~2.5 to enhance 
capture solid angle

• Gain ~6-8

ThO
Source

Detected ThO

Field plates
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4. Readout/collection efficiency 
improvements

• I state has two benefits:
• Eliminate light contamination from STIRAP/probing 

at the same wavelength (690 nm). 

• Gain of 2.5 in PMT quantum efficiency at shorter wavelength.



4. Readout/collection efficiency 
improvements

• I state has two benefits:
• Eliminate light contamination from STIRAP/probing 

at the same wavelength (690 nm). 

• Gain of 2.5 in PMT quantum efficiency at shorter wavelength.

• Switching from using fiber bundles to bent lightpipes
eliminates fiber bundles packing fraction loss.



ACME GEN II Target
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