
Errata to results in Johnson, Brahms and Newman theses December 7, 2009

To whom it may concern,
An error was discovered in the data analysis in work of Johnson, Brahms and Newman theses.

To be specific, an incorrect formula for the optical cross section was used, leading to errors in atom
number in the work with iron, nickel, copper, cobalt, silver, dysprosium and holmium, and the
collisional reorientation rate constant in the work of dysprosium.

Detailed derivations of the optical cross section can be founded in Ref. [1, 2, 4, 5].

σcorrect =
3λ2

0

2π
Γ2/4

(ω − ω0)2 + Γ2/4
|〈J,MJ , 1, q|J ′,M ′J〉|2 (1)

F =
σcorrect

σtheses
(2)

Element F
Ag (328 nm) 3
Co (241 nm) 9
Cu (325 nm) 3
Dy (405 nm) 195/17 ≈ 11.5
Fe (248 nm) 7
Ho (411 nm) 15
Ni (232 nm) 9

For dysprosium, the updated two-body loss rate constant (gR) is (2.1±0.2)×10−11cm3s−1. Due
to trap dynamics, the collisional reorientation rate constant could be a few times higher [3]. We
claim that there is strong evidence for spin relaxation driven by electrostatic anisotropy in collisions
between dysprosium atoms.

We also would like to point out an unfortunate typographical error in the abstract of Newman’s
thesis. Dysprosium was adiabatically, not evaporatively, cooled to 50 mK.

At the time of writing, the dysprosium results have yet to be published. In the meantime, please
cite the dysprosium results as “B. Newman, N. Brahms, Y. S. Au, C. Johnson, C. B. Connolly, J.
M. Doyle, D. Kleppner, and T. Greytak, (in preparation).”

For holmium, the updated result of the collisional reorientation rate constant (gR) is (1.1±0.2)×
10−11cm3s−1. We consider the result to be preliminary and do not draw any conclusions about the
spin relaxation mechanism.
Regards,
Colin Connolly and Yat Shan Au
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Introduction

In order to extract information such as atom number, temperature and state distribution from the measured
trapped spectrum, a knowledge of the optical absorption cross section is needed. The cross section can be
measured or calculated. Detail derivations can be founded in Ref. [1, 2, 3, 4]. Here we provide a summary
of the results that are relevant to our data analysis. We will focus on the case of a two-level atom.

Two-state atom

Consider a laser beam traveling through a medium along the z-axis.

dI

dz
= −(Ng −Ne)σ(ω)I(ω) (1)

The right-hand side of Eq. 1 is the rate of simulated absorption in excess of simulated emission, which in
steady state equals to the rate of spontaneous emission.

−(Ng −Ne)σI = NeΓ~ω

Hence,

σ(ω) =
Ne

Ne −Ng

Γ~ω
I

(2)

The atomic state populations are given by the steady state solution to the optical Bloch equation [3].

ρee =
Ne

N
(3)

w =
Ne −Ng

N
(4)

We have,

σ(ω) =
Ω2/4

(ω − ω0)2 + Γ2/4
Γ~ω
I

(5)

= L(ω)Γ
π

2
~ω
I

Ω2

Γ
(6)

where L(ω) is the Lorentzian lineshape.

I =
n~ωc
V

(7)

~ω
I

=
V

nc
(8)

The Rabi frequency is defined to be

~Ω = −~d · ~E (9)

Using ε0E2 = n~ω/V ,

Ω2 =
nω0

ε0~V
|〈g|~d · û|e〉|2 (10)

where û is the spherical unit vector.
The spontaneous emission rate Γ can be calculated using Fermi’s Golden rule.
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Γ =
2π
~
|〈i|H ′|f〉|2ρf (~ω)δ(~ω0) (11)

where |i〉 = |e〉|n− 1〉, |f〉 = |g〉|n〉 and1

|〈i|H ′|f〉|2 =
~ω

2ε0V

∣∣〈g|~d · ~u|e〉∣∣2 (12)

Integrating over all final photon directions2 [1],

ρf =
V

2π2

ω2
0

~c3
(13)

Γ =
ω3

2πε0~c3
∣∣〈g|~d · ~u|e〉∣∣2 (14)

Since spontaneous emission is caused by vacuum fluctuation, we average over all possible spatial orien-
tations of û in Γ. We obtain one-third of the dipole matrix element in Ω for that in Γ if the optimal laser
polarization is used to drive the transition.

Therefore, for optimally polarized light,

σ(ω) ∝ Ω2

Γ
(15)

=
3λ2

0

2π
Γ2/4

(ω − ω0)2 + Γ2/4
(16)

Note that on resonance, the cross section is independent of the transition strength.

σ(ω0) =
3λ2

0

2π
(17)

The result can be understood by noting that slower spontaneous decay in a narrow transition is compen-
sated by a higher excitation probability on resonant.

Two-level atom

Next, we consider the case of a two-level atom with multiple mJ states. Suppose that both atom and laser
are polarized. We can calculate the contribution of the total cross section from a specific ground state MJ .3

Let’s first examine the Rabi frequency.4

Ω2 =
nω0

ε0~V
|〈g, J,MJ |~d · û|e, J ′,M ′J〉|2 (18)

=
nω

ε0~V
|〈g, J,MJ |duq|e, J ′,M ′J〉|2 (19)

Applying the Wigner-Eckart theorem,

Ω2 =
nω

ε0~V
|〈g, J ||d||e, J ′〉|2

2J + 1
|〈J,MJ , 1, q|J ′,M ′J〉|2 (20)

The spontaneous emission rate is now an incoherent sum of decay rate through all possible channel. We
can similarly apply the Wigner-Eckart theorem to each decay term.

1We have used the energy density of the zero-point radiation field, ε0E2 = ~ω/2V .
2We do not sum over polarizations because it has already been determined by the orientations of both ~d and û.
3In absence of other processes, we will deplete the specific group MJ state through optically pumping, and a steady state

will not be archieved. Therefore, at least part of the system, atom or laser field, must be unpolarized, and we will sum over
different contributions to obtain the total cross section.

4We have chosen the polarizations such that ~d is along one of the basis vector û.
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ΓM ′
J→MJ

=
ω3

6πε0~c3
|〈g, J ||d||e, J ′〉|2

2J + 1

∑
q

|〈J,MJ , 1, q|J ′,M ′J〉|2 (21)

Γtot =
∑
MJ

ΓM ′
J→MJ

(22)

=
ω3

6πε0~c3
|〈g, J ||d||e, J ′〉|2

2J + 1

∑
MJ

∑
q

|〈J,MJ , 1, q|J ′,M ′J〉|2 (23)

=
ω3

6πε0~c3
|〈g, J ||d||e, J ′〉|2

2J + 1
(24)

Therefore,

σ(ω) =
3λ2

0

2π
Γ2/4

(ω − ω0)2 + Γ2/4
|〈J,MJ , 1, q|J ′,M ′J〉|2 (25)

In the dipole approximation, light does not change the electronic spin s. Let’s check if our result enforces
such selection rule, if L and s are well-defined.

|αJMJ〉 =
∑

i

Ci|αLML〉|SMS〉 (26)

where Ci are the Clebsch-Gordan coefficients.
Inserting Eq. 26 into Eq. 20,

Ω2 ∝ |〈J,MJ , 1, q|J ′,M ′J〉|2 (27)

=
∑
i,j

|C∗i Cj〈g, L,ML|〈S,MS |〈1, q|e, L′,M ′L〉|S′,M ′S〉|2 (28)

=
∑
i,j

|C∗i Cj |2 · |〈g, L,ML|〈1, q|e, L′,M ′L〉|2 · |〈SMs|S′M ′s〉|2 (29)

∝
∑

S,MS ,
S′,M ′

S

δS,S′δMS ,M ′
S

(30)

Since σ ∝ Ω2, our result indeed respects the δS = 0 selection rule.
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