ACME Collaboration: Vitaly Andreev, ¹ Daniel G. Ang,¹ David DeMille² (PI), John M. Doyle¹ (PI), Jonathan Haefner,¹ Nicholas R. Hutzler, ³ Zack D. Lasner,² Cole Meisenhelder,¹ Brendon R. O' Leary,² Cristian D. Panda,¹ Adam D. West,² Elizabeth P. West,¹ Xing Wu² Affiliation: ¹Harvard University, ²Yale University, ³California Institute of Technology

Order-of-magnitude improvement in the limit on the electron electric dipole moment

ncertainty	
0.38	σ_{stat}
0.34	σ_{stat}
0.16	σ_{stat}
).003	σ_{stat}
).003	σ_{stat}
0.36	σ_{stat}
0.29	σ_{stat}
0.28	σ_{stat}
0.25	σ_{stat}
0.20	σ_{stat}
0.13	σ_{stat}
0.83	σ_{stat}

$$\omega_P^{\widetilde{N}\widetilde{E}} = (\partial \omega^{\widetilde{N}\widetilde{E}} / \partial P) \bar{P}.$$

Example Systematic 2: Non-reversing Electric Field Gradients Coupling to Magnetic Field **Gradients and Laser Detunings**

0.05 0.00 -0.05 -0.10

-0.1

Outlook We have measured the electron EDM with a statistical uncertainty given by $\sigma_{stat} = 3.1 \times 10^{-30} \,\mathrm{e} \cdot \mathrm{cm}$ and the systematic errors considered together give a smaller contribution. Our result provides a limit on the electron EDM that is an order of magnitude smaller than the best previous measurement, probing physics at energy scales of $\sim 3 - 30$ TeV.

1) Patch effects and voltage offsets can produce a gradient in the non-reversing electric field, $\frac{\partial \mathcal{E}^{nr}}{\partial z}$.

2) This produces an $\widetilde{N}\widetilde{E}$ correlated detuning gradient, $\frac{\partial \delta^{NE}}{\partial z}$.

3) Any detuning gradient couples to the efficiency, η , of our state preparation procedure (STIRAP) if we are not on resonance $(\frac{\partial \eta}{\partial \delta} \neq 0)$.

4) The combination of $\frac{\partial \delta^{\widetilde{NE}}}{\partial z}$ and $\frac{\partial \eta}{\partial \delta}$ produces an \widetilde{NE} correlated shift in the beam center of mass along z, dz^{NE} .

5) A magnetic field gradient $\frac{\partial \mathcal{B}}{\partial z}$ produces a spatially dependent precession frequency, which couples to the shift in center of mass to produce a shift in the EDM channel, $\omega^{NE} = \frac{\partial \omega}{\partial \mathcal{B}} \times \frac{\partial \mathcal{B}}{\partial z} \times dz^{NE}$.

This systematic produces a shift in $\omega^{\widetilde{N}\widetilde{E}}$ that is proportional to $\frac{\partial \mathcal{E}^{nr}}{\partial z} \times \delta \times \frac{\partial \mathcal{B}}{\partial z}$.

References

ACME I result: J Baron et al., *Science* **343**, p. 269-272 (2014) ACME I detailed report: J Baron et al., New J. Phys. 19 (2017) STIRAP state preparation: C.D. Panda et al., Phys. Rev. A 93, 052110 (2016) Previous eEDM Limit: J. J. Hudson et al., Nature 473, 7348 (2011) E_{eff} Calculations: L. V. Skripnikov et al., *J. Chem. Phys.* 142 024301 (2015), T. Fleig et al., *J. Mol. Spec.* **300** p. 16-21 (2014) EDM & SUSY: J. Feng, Annu. Rev. Nucl. Part. Sci., 63:351-82 (2013), Y. Nakai, et al., J. High *Energy Phys.* , **2017**:31 (2017)