ThO Neon Beam Flux Calculation

Nick Hutzler

March 7, 2010

We will calculate the peak and total flux (per pulse) of a 17 K neon-cooled ThO beam. The calculation will use data from the run on 24 January 2010, shown below.

Figure 1: Typical absorption data on the ThO X-C Q(4) line. The blue curve is absorption just after the cell aperture, while the green curve is absortion 3.4 cm after the aperture. The green absorption fraction curve is scaled up by a factor of 100 . There is a 2 mm diameter collimating aperture 1.2 cm downstream from the cell. The cell temperature is 17 K , and there is a 40 sccm flow outside of the aperture, which is 4 mm by 4 mm square.

The important values from this data are:

$$
O D_{\text {peak }} \approx 0.1 \quad \int d t O D(t) \approx 0.2 \times 10^{-3} \mathrm{~s}
$$

The cell aperture is 5.4 mm diagonal, or $3.8 \mathrm{~mm} \times 3.8 \mathrm{~mm}$. We wish to extract the number density n at the aperture by solving $n \approx 1 /(\ell \sigma)$, where σ is the absorption cross section and ℓ is the optical path length. Since we are sending the laser along the diagonal of the aperture, the path length is $\ell \approx 5 \mathrm{~mm}$.

The resonant $|g, J\rangle \rightarrow\left|e, J^{\prime}\right\rangle$ absorption cross-section for a doppler-broadened atom in zero field is given by

$$
\sigma_{a b s}=\frac{\sqrt{\pi}}{2} \frac{\lambda^{2}}{2 \pi} \frac{2 J^{\prime}+1}{2 J+1} \frac{\Gamma_{p}}{\Gamma_{D}}
$$

where Γ_{D} is the doppler width of the excited state, and Γ_{p} is the width of the decay $\left|e, J^{\prime}\right\rangle \rightsquigarrow|g, J\rangle$ (see Dave's book, §3.5 and 3.6).

The natural width of an electronic transition is $\gamma \sim 2 \pi \times 10 \mathrm{MHz}$, so we would require temperatures of $\sim 1 \mathrm{~K}$ in ThO for the Doppler width to be comparable to the natural width. Thus we are indeed in the doppler broadened limit.

In the appendix, we show that $\Gamma_{p} \approx \frac{3}{4} \gamma$. Therefore, for a Q-branch $(\Delta J=0)$ absorption transition from $|X, v=0\rangle \rightarrow\left|C, v^{\prime}=0\right\rangle$,

$$
\begin{aligned}
\sigma & =\frac{\sqrt{\pi}}{2} \frac{\lambda_{X C}^{2}}{2 \pi} \frac{\frac{3}{4} \gamma}{\Gamma_{D}} \\
& =\frac{\sqrt{\pi}}{2} \frac{(690 \mathrm{~nm})^{2}}{2 \pi} \frac{\frac{3}{4} \times 2 \pi \times 10 \mathrm{MHz}}{2 \pi \times 50 \mathrm{MHz}} \\
& \approx 1 \times 10^{-10} \mathrm{~cm}^{2}
\end{aligned}
$$

where we used that $\Gamma_{D}=2 \pi \times \sqrt{2 K_{B} T / m \lambda^{2}}$, and we have assumed that the molecules at the aperture are at 17 K . Therefore the peak density outside the cell is

$$
n_{\mathrm{peak}, \mathrm{~J}=4} \approx \frac{1}{\ell \sigma}=\frac{1}{(5 \mathrm{~mm})\left(1 \times 10^{-10} \mathrm{~cm}^{2}\right)} \approx 2 \times 10^{10} \mathrm{~cm}^{-3}
$$

Now let's try to extract the total number of molecules in this state per pulse, and the peak flux. If the density outside the aperture is $n(t)$, the aperture area is A, and the molecules are moving forward at velocity v, then the instantaneous molecular flux is

$$
\dot{N}_{J=4}(t)=A v n(t) \approx \frac{A v}{\ell \sigma} O D(t)=\frac{(4 \mathrm{~mm})^{2}(150 \mathrm{~m} / \mathrm{s})}{(5 \mathrm{~mm})\left(1 \times 10^{-10} \mathrm{~cm}^{2}\right)} O D(t)=\left(5 \times 10^{13} \mathrm{~s}^{-1}\right) O D(t)
$$

Where we have estimated $v \approx 150 \mathrm{~m} / \mathrm{s}$. The peak OD is 0.1 , so the peak flux is

$$
\dot{N}_{\text {peak }, \mathrm{J}=4} \approx 5 \times 10^{12} \mathrm{~s}^{-1}
$$

The total number of molecules per pulse is then

$$
N_{t o t, J=4} \approx\left(5 \times 10^{13} \mathrm{~s}^{-1}\right) \int d t O D(t)=\left(5 \times 10^{13} \mathrm{~s}^{-1}\right)\left(0.2 \times 10^{-3} \mathrm{~s}\right)=1 \times 10^{10}
$$

Remember this is the number of molecules in the $J=4$ state at 17 K , which should contain 14% of the total number of molecules. We expect the beam to cool as it expands, say to 4 K . At this temperature the $J=1$ state has about 25% of the total population, so we can estimate that the $J=1$ population in the beam will be increased by a factor of $25 / 14 \approx 2$, for a total number per state per pulse of $\approx 2 \times 10^{10}$.

Appendix: Branching Ratios

In a molecule the partial width is the total spontaneous decay rate of the excited state multiplied by the electronic, vibrational (Franck-Condon), and rotational (Hönl-London) branching ratios into the lower state. Denote these branching ratios as f_{e}, f_{v}, f_{r} respectively. The partial width of a Q-branch, X-C transition is approximately $3 / 4$ the total width, as we will now show by calculating each of these branching ratios.

Electronic

The C state can undergo an E1 decay into the states $\mathrm{X}, \mathrm{H}, \mathrm{Q}, \mathrm{A}$, or B . The decay rates are proportional to the wavelength of the transition cubed, and notice

$$
\log \lambda_{C X}^{3}=8.3 \quad \log \lambda_{C H}^{3}=9.1 \quad \log \lambda_{C Q}^{3}=9.2 \quad \log \lambda_{C A}^{3}=10.2 \quad \log \lambda_{C B}^{3}=10.4
$$

We can therefore estimate that decays to H and Q are $\mathrm{a} \sim 10 \%$ effect, while the others are $\sim 1 \%$ and can be ignored. The majority of the C state is a combination of $75 \%{ }^{1} \Pi_{1}+20 \%{ }^{3} \Pi_{1}$. Since the X and Q / H states are singlet and triplet respectively, the strongest transitions will be from the singlet-singlet and triplet-triplet decays, i.e.

The branching ratios are then

$$
\begin{aligned}
\frac{\Gamma_{C H}}{\Gamma_{C X}} & =\frac{20 \%}{75 \%} \frac{\omega_{C H}^{3}}{\omega_{C X}^{3}} \frac{\left|\mathbb{D}\left[{ }^{1} \Pi_{1} \rightarrow{ }^{0} \Sigma_{1}\right]\right|^{2}}{\left|\mathbb{D}\left[{ }_{1} \Pi_{1}{ }^{3} \Delta_{1}\right]\right|^{2}} \\
& \approx \frac{20 \%}{75 \%} \frac{(1 / 1090)^{3}}{(1 / 690)^{3}} \\
& \simeq 7 \% \\
\frac{\Gamma_{C Q}}{\Gamma_{C X}} & =\frac{20 \%}{75 \%} \frac{\omega_{C Q}^{3}}{\omega_{C X}^{3}} \frac{\left|\mathbb{D}\left[{ }^{1} \Pi_{1} \rightarrow{ }^{0} \Sigma_{1}\right]\right|^{2}}{\left|\mathbb{D}\left[{ }^{3} \Pi_{1} \rightarrow{ }^{3} \Delta_{2}\right]\right|^{2}} \\
& \approx \frac{20 \%}{75 \%} \frac{(1 / 1195)^{3}}{(1 / 690)^{3}} \\
& \simeq 5 \%
\end{aligned}
$$

where \mathbb{D} represents the electronic dipole matrix element between the pure ${ }^{2 \Sigma+1} \Lambda_{\Omega}$ states. Therefore the electronic branching ratio back down to X is

$$
\frac{\Gamma_{C X}}{\Gamma_{C X}+\Gamma_{C H}+\Gamma_{C Q}}=\frac{1}{1+\Gamma_{C H} / \Gamma_{C X}+\Gamma_{C Q} / \Gamma_{C X}}=89 \%
$$

$X-C$ Electronic Branching Ratio $f_{e} \approx 0.9$

Vibrational

The probability of a state \mid Non-vibrational,Vibrational $\rangle=\left|\Gamma_{1}, i\right\rangle$ decaying into state $\left|\Gamma_{2}, f\right\rangle$ is proportional to $F_{i f} \times M\left[\Gamma_{1}, \Gamma_{2}\right]$, where M is some matrix element that doesn't depend on the vibrational wavefunctions, and $F_{i f}$ is the Franck-Condon factor, or overlap of the vibrational wavefunctions:

$$
F[1 \rightarrow 2]_{i f}=|\langle f \mid i\rangle|^{2}=\left|\int d x\langle x \mid f\rangle^{*}\langle x \mid i\rangle\right|^{2}
$$

Therefore, the factors $F_{i f}$ give the vibrational branching ratios for a particular electronic decay. The $v^{t h}$ vibrational wavefunction for a simple harmonic oscillator with reduced mass m, natural frequency ω, and equilibrium position r is given by

$$
\psi_{v}(x)=\frac{1}{\sqrt{2^{v}(v!)}}\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} H_{v}((x-r) \sqrt{m \omega / \hbar}) e^{-m \omega(x-r)^{2} /(2 \hbar)}
$$

where H_{v} is a Hermite polynomial. The Franck-Condon factor between the i and f vibrational levels are then

$$
F_{i f}=\frac{m \sqrt{\omega_{i} \omega_{f}}}{2^{(i+f)} i!f!\pi \hbar}\left|\int d x H_{i}\left(\left(x-r_{i}\right) \sqrt{m \omega_{i} / \hbar}\right) H_{f}\left(\left(x-r_{f}\right) \sqrt{m \omega_{f} / \hbar}\right) e^{-m\left[\omega_{i}\left(x-r_{i}\right)^{2}+\omega_{f}\left(x-r_{f}\right)^{2}\right] /(2 \hbar)}\right|^{2}
$$

The X and C states have the following molecular constants:

State	$\omega\left[\mathrm{cm}^{-1}\right]$	$r[\AA]$
X	895.77	1.83
C	825.1	1.87

Plugging these values into a simple computer program shows that

$$
F[C \rightarrow X]_{0 f}=\{83,16,1,0, \ldots\} \%
$$

Where we have rounded to the nearest percent. Therefore, when the the $|C, v=0\rangle$ decays into the X state, 83% of the time it will end up in $|X, v=0\rangle$.

The above calculation assumes that the vibrational potential is a harmonic oscillator; a more accurate calculation is to treat the potential as a Morse potential. Luckily somebody has done this for us 1, and their 0-0 branching ratio for $X-C$ is 0.86 . Therefore, after all of the stuff up above,

$$
X(v=0)-C(v=0) \text { Vibrational Branching Ratio } f_{v} \approx 0.86
$$

[^0]
Rotational

Now assume that we are looking at a Q-branch line, i.e. $J=J^{\prime}$. Further assume that we are looking at states with $\Omega=0, \Omega^{\prime}=1$, for example $X-C$ absorption. Then the state $\left|J, \Omega^{\prime}=1\right\rangle$ can only decay back to $|J, \Omega=0\rangle$ by parity, as seen in the following figure.

The figure above shows the level structure (not to scale). The $\Omega=1$ state has Ω doublets of opposite parity for each J, whereas the $\Omega=0$ state does not. Thus if the bold line \Rightarrow indicates the absorption transition, we can see that the only E1 allowed decay ($+\leftrightarrow-$ parity, $\Delta J=0, \pm 1$) is back down to J in the lower state. Therefore the rotational branching ratio for a Q branch transition is 1 .

$$
X-C Q \text { - branch Electronic Branching Ratio } f_{r}=1
$$

Overall Branching Ratio

The conclusion is that the branching ratio of the decay $|C, v=0, J\rangle \rightsquigarrow|X, v=0, J\rangle$ is approximately

$$
f_{e} \times f_{v} \times f_{r}=(0.9) \times(0.86) \times(1)=\mathbf{0 . 7 7} \approx \frac{\mathbf{3}}{\mathbf{4}}
$$

[^0]: ${ }^{1}$ Wentink, T., \& Spindler, R. J. (1972). J. Quant. Spectrosc. and Rad. Transf., 12(11), 1569.

