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We will calculate the peak and total flux (per pulse) of a 17K neon-cooled ThO beam. The
calculation will use data from the run on 24 January 2010, shown below.
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Figure 1: Typical absorption data on the ThO X-C Q(4) line. The blue curve is absorption just after
the cell aperture, while the green curve is absortion 3.4cm after the aperture. The green absorption
fraction curve is scaled up by a factor of 100. There is a 2mm diameter collimating aperture 1.2cm
downstream from the cell. The cell temperature is 17K, and there is a 40 sccm flow outside of the
aperture, which is 4 mm by 4 mm square.

The important values from this data are:

ODpeak ≈ 0.1
∫
dt OD(t) ≈ 0.2 × 10−3 s

The cell aperture is 5.4mm diagonal, or 3.8mm x 3.8mm. We wish to extract the number density n
at the aperture by solving n ≈ 1/(�σ), where σ is the absorption cross section and � is the optical path
length. Since we are sending the laser along the diagonal of the aperture, the path length is � ≈ 5mm.
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The resonant |g, J〉 → |e, J ′〉 absorption cross-section for a doppler-broadened atom in zero field is
given by

σabs =
√
π

2
λ2

2π
2J ′ + 1
2J + 1

Γp

ΓD

where ΓD is the doppler width of the excited state, and Γp is the width of the decay |e, J ′〉 � |g, J〉
(see Dave’s book, §3.5 and 3.6).

The natural width of an electronic transition is γ ∼ 2π×10 MHz, so we would require temperatures
of ∼ 1 K in ThO for the Doppler width to be comparable to the natural width. Thus we are indeed in
the doppler broadened limit.

In the appendix, we show that Γp ≈ 3
4γ. Therefore, for a Q-branch (ΔJ = 0) absorption transition

from |X, v = 0〉 → |C, v′ = 0〉,

σ =
√
π

2
λ2

XC

2π

3
4γ

ΓD

=
√
π

2
(690 nm)2

2π

3
4 × 2π × 10MHz

2π × 50MHz
≈ 1 × 10−10cm2

where we used that ΓD = 2π×√
2KBT/mλ2, and we have assumed that the molecules at the aperture

are at 17K. Therefore the peak density outside the cell is

npeak,J=4 ≈ 1
�σ

=
1

(5 mm)(1 × 10−10cm2)
≈ 2 × 1010cm−3

Now let’s try to extract the total number of molecules in this state per pulse, and the peak flux. If
the density outside the aperture is n(t), the aperture area is A, and the molecules are moving forward
at velocity v, then the instantaneous molecular flux is

ṄJ=4(t) = Avn(t) ≈ Av

�σ
OD(t) =

(4 mm)2(150 m/s)
(5 mm)(1 × 10−10cm2)

OD(t) = (5 × 1013 s−1)OD(t)

Where we have estimated v ≈ 150 m/s. The peak OD is 0.1, so the peak flux is

Ṅpeak,J=4 ≈ 5 × 1012 s−1

The total number of molecules per pulse is then

Ntot,J=4 ≈ (5 × 1013 s−1)
∫
dt OD(t) = (5 × 1013 s−1)(0.2 × 10−3 s) = 1 × 1010

Remember this is the number of molecules in the J = 4 state at 17K, which should contain 14%
of the total number of molecules. We expect the beam to cool as it expands, say to 4K. At this
temperature the J = 1 state has about 25% of the total population, so we can estimate that the J = 1
population in the beam will be increased by a factor of 25/14 ≈2, for a total number per state per
pulse of ≈ 2 × 1010.
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Appendix: Branching Ratios

In a molecule the partial width is the total spontaneous decay rate of the excited state multiplied by
the electronic, vibrational (Franck-Condon), and rotational (Hönl-London) branching ratios into the
lower state. Denote these branching ratios as fe, fv, fr respectively. The partial width of a Q-branch,
X-C transition is approximately 3/4 the total width, as we will now show by calculating each of these
branching ratios.

Electronic

The C state can undergo an E1 decay into the states X,H,Q,A, or B. The decay rates are proportional
to the wavelength of the transition cubed, and notice

logλ3
CX = 8.3 logλ3

CH = 9.1 logλ3
CQ = 9.2 logλ3

CA = 10.2 logλ3
CB = 10.4

We can therefore estimate that decays to H and Q are a ∼ 10% effect, while the others are ∼ 1% and
can be ignored. The majority of the C state is a combination of 75%1Π1 + 20%3Π1. Since the X and
Q/H states are singlet and triplet respectively, the strongest transitions will be from the singlet-singlet
and triplet-triplet decays, i.e.

C : 75%1Π1

ΓCX

��

C : 20%3Π1

ΓCH

��

ΓCQ

������������

X =1Σ0 H =3Δ1 Q ≈ 3Δ2

The branching ratios are then

ΓCH

ΓCX
=

20%
75%

ω3
CH

ω3
CX

|D[1Π1 →0Σ1]|2
|D[3Π1 →3Δ1]|2

≈ 20%
75%

(1/1090)3

(1/690)3

� 7%
ΓCQ

ΓCX
=

20%
75%

ω3
CQ

ω3
CX

|D[1Π1 →0Σ1]|2
|D[3Π1 →3Δ2]|2

≈ 20%
75%

(1/1195)3

(1/690)3

� 5%

where D represents the electronic dipole matrix element between the pure 2Σ+1ΛΩ states. Therefore
the electronic branching ratio back down to X is

ΓCX

ΓCX + ΓCH + ΓCQ
=

1
1 + ΓCH/ΓCX + ΓCQ/ΓCX

= 89%

X − C Electronic Branching Ratio fe ≈ 0.9
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Vibrational

The probability of a state |Non-vibrational,Vibrational〉 = |Γ1, i〉 decaying into state |Γ2, f〉 is propor-
tional to Fif ×M [Γ1,Γ2], where M is some matrix element that doesn’t depend on the vibrational
wavefunctions, and Fif is the Franck-Condon factor, or overlap of the vibrational wavefunctions:

F [1 → 2]if = |〈f |i〉|2 =
∣∣∣∣
∫
dx 〈x|f〉∗〈x|i〉

∣∣∣∣
2

Therefore, the factors Fif give the vibrational branching ratios for a particular electronic decay. The
vth vibrational wavefunction for a simple harmonic oscillator with reduced mass m, natural frequency
ω, and equilibrium position r is given by

ψv(x) =
1√

2v(v!)

(mω
π�

)1/4

Hv((x− r)
√
mω/�)e−mω(x−r)2/(2�)

where Hv is a Hermite polynomial. The Franck-Condon factor between the i and f vibrational levels
are then

Fif =
m
√
ωiωf

2(i+f)i!f !π�

∣∣∣∣
∫
dx Hi((x− ri)

√
mωi/�)Hf ((x− rf )

√
mωf/�)e−m[ωi(x−ri)

2+ωf (x−rf )2]/(2�)

∣∣∣∣
2

The X and C states have the following molecular constants:
State ω[cm−1] r[Å]
X 895.77 1.83
C 825.1 1.87

Plugging these values into a simple computer program shows that

F [C → X ]0f = {83, 16, 1, 0, . . .}%

Where we have rounded to the nearest percent. Therefore, when the the |C, v = 0〉 decays into the X
state, 83% of the time it will end up in |X, v = 0〉.

The above calculation assumes that the vibrational potential is a harmonic oscillator; a more
accurate calculation is to treat the potential as a Morse potential. Luckily somebody has done this for
us1, and their 0-0 branching ratio for X − C is 0.86. Therefore, after all of the stuff up above,

X(v = 0) − C(v = 0) Vibrational Branching Ratio fv ≈ 0.86

1Wentink, T., & Spindler, R. J. (1972). J. Quant. Spectrosc. and Rad. Transf., 12(11), 1569.
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Rotational

Now assume that we are looking at a Q−branch line, i.e. J = J ′. Further assume that we are looking
at states with Ω = 0,Ω′ = 1, for example X−C absorption. Then the state |J,Ω′ = 1〉 can only decay
back to |J,Ω = 0〉 by parity, as seen in the following figure.

Ω = 0 Ω = 1

(J + 1)+

(J + 1)+ (J + 1)−

J+
�

��

×

��

×
�����������������

J−

����������������

��������������
J−

(J − 1)+

(J − 1)+ (J − 1)−

The figure above shows the level structure (not to scale). The Ω = 1 state has Ω doublets of
opposite parity for each J , whereas the Ω = 0 state does not. Thus if the bold line ⇒ indicates the
absorption transition, we can see that the only E1 allowed decay (+ ↔ − parity, ΔJ = 0,±1) is back
down to J in the lower state. Therefore the rotational branching ratio for a Q branch transition is 1.

X − C Q− branch Electronic Branching Ratio fr = 1

Overall Branching Ratio

The conclusion is that the branching ratio of the decay |C, v = 0, J〉� |X, v = 0, J〉 is approximately

fe × fv × fr = (0.9) × (0.86) × (1) = 0.77 ≈ 3
4
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