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Collimation by an ideal potential

Consider a potential U(r) in a cylindrical geometry. In order to act as a focusing lens, the potential
should vary as U(r) ∝ −r2, so that the force F (r) ∝ −�r. Let U(r) = − 1

2kr2 and F (r) = −k�r. Assume
that the potential only exists in a finite region d < z < d + � and 0 ≤ r < R.

Consider a point source of atoms at r = z = 0. The atoms have velocity vector v0(ẑ cos(θ)+r̂ sin(θ))
before entering the potential. Because the longitudinal motion is not affected, let’s only consider
the transverse motion vr = v0 sin(θ) and r(t). When the atom enters the potential, it has position
r(0) = d tan(θ) and vr(0) = v0 sin(θ). The equation of motion for the particle is

mv̇r(t) = −kr r(0) = d tan(θ) vr(0) = v0 sin(θ)

The solution to this equation is

r(t) =
v0

ω
sin(θ) sin(ωt) + d tan(θ) cos(ωt)

≈ v0

ω
θ sin(ωt) + dθ cos(ωt)

where ω =
√

k/m and we have assumed small angles θ. We would like to collimate the particles so
that vr(Δt) = 0, where Δt is the transit time through the potential, Δt = �/vz = �/v0 cos(θ) ≈ �/v0.
Therefore we require

0 = v(Δt)
= v0θ cos(ωΔt) − dωθ sin(ωΔt)

tan(ωΔt) =
v0

dω

Δt =
1
ω

arctan
( v0

dω

)
� =

v0

ω
arctan

( v0

dω

)
� ≈ π

2
v0

ω

where the last approximation assumes that v0 � dω. In other words, we need v0/ω ≈ � � d, i.e. the
distance to the guide entrance should be much shorter than the guide, which is easily the case in the
situations we will consider.

Collimation by a multipole guide

Now we consider a specific system: a dipolar molecule moving through the electric field created by an
n−pole. The interaction potential of a molecule in an electric field �E = E(r)r̂ is V = �μ · �E = μ|E| = μE .
The force is then F (r) = −∇(μE). We consider two cases: the linear and non-linear stark regimes.

Linear stark regime. This would be the case if we wanted to guide the ThO H state, which is
polarized in extremely small fields. Thus we may assume that μ is a constant, so a stark energy of
W (r) = −μE(r) ∝ r2 requires E ∝ r2. The electric field from an n−pole varies as r(n−2)/2, so in this
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case we would like a hexapole (n = 6). However, we do not want to guide the H state − the H state
will be prepared in the interaction region! We want to guide the X state, which means the non-linear
stark regime.

Non-linear stark regime. Here the stark energy is W = −αE2, where α is the polarizability. To
have W ∝ r2 we want E ∝ r and therefore a quadrupole guide.

Stark Shifts of the ThO X state

We shall use the value μX = 2.8 D reported by Alexei Buchachenko, and BX = 0.33 cm−1 reported
by Alexei and the standard ThO literature. We will be working in the quadratic stark regime, so the
parameter of interest is the polarizability α, where the stark shift is given by W (E) = −αE2. Because
we work with units of cm−1 for W and kV/cm for E , α has units of cm−1/(kV/cm)2. The conversion
to other common units are are follows:

cm−1

(kV/cm)2
= 1.986× 10−33 J

(V/m)2
= 17.85× 106(4πε0)Å3

Perturbative Calculation

We can find the polarizabilities of the rotational states by using the following formula1:

α = − μ2

2hcB

(
J(J + 1) − 3M2

J(J + 1)(2J − 1)(2J + 3)

)
= −(62000× 4πε0Å

3)
(

J(J + 1) − 3M2

J(J + 1)(2J − 1)(2J + 3)

)
where in the second equation we plugged in the values for the X state. We want states with a large,
negative polarizability; this will ensure that the state has a higher energy in higher fields, and is
therefore a low-field seeker and will therefore be pulled into the center of the guide. Therefore, we can
see that M = 0 is the best choice; increasing |M | from M = 0 reduces the magnitude of α if α < 0,
and makes α larger if α > 0. Therefore, we can simplify the above expression with M = 0:

α = − μ2/2hcB

(2J − 1)(2J + 3)
= − 62000× 4πε0Å

3

(2J − 1)(2J + 3)

Now we must determine over what electric field ranges the quadratic stark regime is valid. To use
perturbation theory we want the stark shift |W | = |α|E2 to be much smaller than the rotational spacing
2hcBJ between the J and J − 1 levels, i.e.

E � E∗ ≡
√

2hcBJ

|α| =
2hcB

μ

√
J(2J − 1)(2J + 3) = (14 kV/cm)

√
J(2J − 1)(2J + 3)

(For J = 0, use J = 1 since the nearest level is the J = 1 level). Notice that as we increase J we get
a smaller magnitude of the polarizability, but we have quadratic stark shifts for larger ranges of E .
Thus as the maximum field we can create gets larger, we can have stronger and stronger guiding by
choosing a state with higher and higher J . We shall see that technical limitations impose J ≤ 2 for
us.

J (M = 0) α[4πε0Å
3] E∗[kV/cm]

0 20,000 40
1 -12,000 40
2 -3,000 56

Polarizabilities in units of 4πε0Å
3 are reported with two significant figures here and after. Since

J = 2 starts to leave the quadratic stark regime around electric fields we could reasonably produce, it
isn’t worth calculating higher levels. Therefore, depending on how high an electric field we can create,
the J = 1 or J = 2 (M = 0) levels are the best for guiding.

1Herzberg, (V,96). We also used W = −αE2 and I0 = h/8π2cB
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Hamiltonian Diagonalization Calculation

We must diagonalize the matrix containing the rotational energies and the coupling between the
rotational states2. Say that we have an electric field in the z−direction, which will be the quantization
axis for J . Of course it is not true that we have an electric field in the z−direction, but each molecule
travels along a trajectory at a constant angle with respect to the axis of the guide, so each molecule
sees an electric field in a fixed direction. Thus

〈J ′M ′Ω′|H |JMΩ〉 = δJ,J′BJ2 + μE
√

2J + 1
2J ′ + 1

〈J ′M ′|1, 0; J, M〉〈J ′Ω′|1, Ω′ − Ω; J, Ω〉

Here B is the rotational constant, μ is the electric dipole moment, and E is the electric field. In our
situation we have Ω = Ω′ = 0 (since we are considering the X state), so

〈J ′M ′|H |JM〉 = δJ,J′BJ2 + μE
√

2J + 1
2J ′ + 1

〈J ′M ′|1, 0; J, M〉〈J ′0|1, 0; J, 0〉

By diagonalizing this Hamiltonian we can check the perturbative calculation, get a better idea
about over which ranges the perturbation is valid, and get the actual potential energy curves if we
wanted to simulate a real trajectory. We calculate the Stark shifts W (E) in the states J = 0 up to
J = 2, which we shall see are the states of interest in the ranges of electric fields that we can access in
the lab. We will cut off the matrix at J = 6 since that level is much higher in energy than J = 0, 1, 2;
the energy of 2.8 D in 50 kV/cm is ≈ 2.4 cm−1, while the rotational energy of the J = 6 state is ≈ 12
cm−1 above the J = 2 state. The real test is to check whether the values reported below change if we
include the J = 7 state as well, which they do not.

The stark shifts are plotted in figure 1. To calculate the polarizability α, we fit a parabola to the
Stark energy W = αE2, as shown in figure 2

Guiding the ThO X state

Say that the electric field varies linearly from r = 0 to r = R, where it reaches a maximum value E0,
so E(r) = (E0/R)r. The potential energy experienced by the molecules is then

U(r) =
1
2
kr2αE2 = αE2

0 r2/R2 ⇒ k = 2αE2/R2

The spring constant ω is then given by ω =
√

k/m =
√

2αE2
0/mR2, where m =248 amu. Plugging in

numerical values gives

ω =
E0

R

√
α × (1.6 Hz)

where α is in units of 4πε0Å
3, E is in kV/cm, and R is in mm. If we assume a beam forward velocity

of v0 =150 m/s, and use �guide = π
2

v0
ω , we have

�guide =
R

E0
√

α
× 145 m

We can consider R/E0
√

α as a figure of merit for guiding; notice that switching to J = 2 from
J = 1 would require doubling the electric field to have the same figure of merit.

Some reasonable estimates are E0 = 10 kV/cm and R = 1 mm. We could probably go up to 50
kV/cm peak field, but remember that for an electrostatic lens we want E to be uniform over a radius
R, thus E0 can be considered the maximum field value where the field is still approximately uniform.

For the smaller field of 10 kV/cm we want J = 1 with |α| = 12, 000, so ω = 360 Hz in this case.
To completely collimate the molecules, we would need a guide of length �guide ≈ 13 cm.

2See Brown and Carington, p.823
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Figure 1: Calculation of stark shifts.
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Figure 2: Calculation of polarizability.
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