The ACME search for the electron EDM

- Basic approach
- Measurement scheme
- Statistics
- Systematics
- Result: order of magnitude improvement in sensitivity
- 2nd generation: towards another order of magnitude

Dave DeMille Yale University Physics Department

Funding:

Science

HOW ROUND IS THE ELECTRON?

The ACME team

Paul Hess Brendon O'Leary

n Ben y Spaun Cris Jacob Panda Baron Nick Hutzler

Elizabeth Petrik

Adam West ACME

Emil Kirilov

Amar Vutha

John Doyle

Yulia Gurevich

Wes Campbell

Ivan

Kozyryev

COP -

Max Parsons

Gerald Gabrielse

DPD

Amplifying the electric field \mathcal{E} with a polar molecule

Inside molecule, eEDM acted on by P. Sandars $\mathcal{E}_{eff} \sim \mathcal{P} \alpha^2 Z^3 e / a_0^2$ due to relativistic motion 1965

 $\mathcal{E}_{eff} \cong 80 \text{ GV/cm for ThO*}$

Meyer & Bohn (2008); Skripnikov, Petrov & Titov (2013); Fleig & Nayak (2014) 104(26) 84(13) 75(2)

Requires unpaired electron spin(s)

New molecular beam technology: hydrodynamically enhanced cryogenic beams

[Maxwell *et al.* PRL 2005; Patterson & Doyle JCP 2007; Barry *et al.* PCCP 2011; Hutzler *et al.* PCCP 2011]

Cryorefrigerator

- Inject hot molecules (e.g. via laser ablation)
- Cool w/cryogenic buffer gas <u>@high density</u>
 - Efficient extraction to beam via "wind" in cell: $10^{-3} \rightarrow >10\%$
 - "Self-collimated" by extraction dynamics
- Rotationally cooled by supersonic expansion
 - Cold (~4 K) & moderately slow (v ~ 200 m/s)

Beam brightness [=flux/divergence] ~ **10**³ × *larger* than other sources for refractory/free radical species

EDM measurement with Ω -doublet states

"New" molecular species: ThO* [A.C. Vutha et al. J. Phys B (2010)]

- Large *E*_{eff} ≅ 80 GV/cm in H³Δ₁ state [Meyer & Bohn PRA 2008; Skripnikov et al. JCP 2013; Fleig & Nayak J. Mol. Spectrosc. 2014]
- **Q-doublet structure in** $H^{3}\Delta_{1}$ **state** --very easily polarized --suppresses many possible systematics
- Sufficient coherence time in $H^{3}\Delta_{1}$ state metastable: $\tau \approx 1.9$ ms
- Suppressed magnetic moment in $H^{3}\Delta_{1}$ state <0.01 μ_{B} in $H^{3}\Delta_{1}$ reduces *B*-field systematics [Idea: Meyer, Bohn, Cornell et al. (JILA); Measured: A.C. Vutha *et al.*, PRA 2011]
- All spectroscopic data previously known
- State preparation and readout w/standard, robust diode & fiber lasers
- Blue-shifted fluorescence from probe laser
 ⇒no problem with backgrounds
- High beam source yield

ACME experimental schematic

ACME apparatus

Magnetic field coils (3 orthogonal components & all first-order gradients)

Complete beam source & magnetic shields & last-stage optics

ACME apparatus

One of several optical tables w/ ~ten lasers, dozens of modulators, hundreds of meters of optical fiber, etc. spread over two buildings

"control room"

ACME spin-measurement protocol

Contrast measurement w/rotated basis

Contrast measurement & spin-rotation fringe

Assigning statistical uncertainty

Cut on signal size --avoids non-Gaussian stats. --only significant data cut

--Calculate Asymmetry ${\cal A}$ for each polarization chop

--Bin to find average & std. error --use standard "error propagation" for subsequent combinations

Data taking strategy: primary

--psuedo-random (pair-wise), interleaved reversals

--calculate average asymmetry \mathcal{A} , contrast \mathcal{C} , & phase $\phi = \mathcal{A}/\mathcal{C}$ for each "machine state" $(\mathbf{N}, \mathbf{E}, \mathbf{B})$ [tilde = signs of $\mathcal{N}, \mathcal{E}, \mathcal{B}$]

Data sorting & analysis

Rewrite phase as components correlated w/switches:

$$\phi = \phi^{0} + \phi^{\tilde{E}} + \phi^{\tilde{B}} + \phi^{\tilde{N}} + \phi^{\tilde{N}\tilde{E}} + \phi^{\tilde{N}\tilde{B}} + \phi^{\tilde{E}\tilde{B}} + \phi^{\tilde{N}\tilde{E}\tilde{B}}$$
Superscipt means
"odd under this reversal" EDM phase other phases to
diagnose systematics
"even under all others"

Different "switch-correlated phases" isolate different physical contributions

ACME EDM data: statistics

 Blind analysis: *hidden offset added to EDM* until final value & uncertainties fixed

 t-distribution Gaussian over full range, out to >3σ

Systematic error analysis

Rewrite phase as components correlated w/switches:

$$\phi = \phi^0 + \phi^{\tilde{E}} + \phi^{\tilde{B}} + \phi^{\tilde{N}} + \phi^{\tilde{N}\tilde{E}} + \phi^{\tilde{N}\tilde{B}} + \phi^{\tilde{E}\tilde{B}} + \phi^{\tilde{N}\tilde{E}\tilde{B}}$$

EDM phase

Superscipt means "odd under this reversal"

other phases to diagnose systematics

"Switch-correlated phases" contain physical contributions:

 $f^{\stackrel{*}{\mathbb{B}}\stackrel{*}{\mathbb{B}}} \mu \ d_e E_{eff} + \frac{1}{2} Dg_N m_H B_{leak} + \frac{1}{2} Dg_N m_H B_{nr} E_{nr} + \dots$ EDM Systematics due to experimental imperfections e.g. --leakage current-induced \mathcal{B} -field $\mathcal{B}_{leak} \propto \mathcal{E}$ --non-reversing \mathcal{E} -field \mathcal{E}_{nr} --etc.

Data analysis: diagnosing imperfections

Switch-correlated phases isolate physical contributions:

$$f^{\mathbb{R} \stackrel{\otimes}{E}} \mu d_{e} E_{eff} + \frac{1}{2} \mathsf{D} g_{N} m_{H} \mathsf{B}_{leak} + \frac{1}{2} \mathsf{D} g_{N} m_{H} \mathsf{B}_{nr} \mathsf{E}_{0} + \dots$$

EDM Experimental imperfections

Most imperfections appear in other correlated phases BUT GREATLY AMPLIFIED

⇒"Other" correlated phases diagnose imperfections

Search strategy for systematic errors

Switch-correlated phases isolate physical contributions:

$$f^{\mathbb{R} \stackrel{\otimes}{\mathbb{P}}} \mu \ d_e E_{eff} + \frac{1}{2} D g_N m_H B_{leak} + \frac{1}{2} D g_N m_H B_{nr} E_0 + \cdots$$

EDM
Experimental imperfections
But... what about terms we don't anticipate?

Strategies:

• Change parameters that should NOT affect EDM but MAY couple to unanticipated imperfections

• DELIBERATELY amplify imperfections, understand any changes in correlated phases

"Extra" reversals and variations

--Each changes effect of certain imperfections but leaves EDM phase unchanged

Consistency under "extra" switches

No significant correlation with "extra" variations as expected for EDM without systematic contamination

Intentionally amplified imperfections

Non-reversing <i>E</i> -field	Non-reversing <i>B</i> -field	
Ω -doublet reversal laser detuning	Relative detuning of Ω -doublet	
Global laser detuning	Individual laser detuning	
Laser beam spatial profile	Laser polarization/ellipticity gradients	
Laser polarization/ellipticity	Probe laser power	
Relative power/pointing of <i>x</i> / <i>y</i> probes	Pump laser power	
Laser beam alignment	AOM settling time	
Molecule beam pointing & position	Beam source variation	
B-field gradients	B-field pointing	
Non-reversing \mathcal{B} -field gradients	Non-reversing \mathcal{B} -field pointing	
Simulated leakage current		

--Data with amplified imperfection not used for actual EDM limit

--also monitored data for correlations with drift of most parameters

Searching for systematic errors

"Pixel plots" used to identify significant correlations between switch-correlated phase, contrast, etc. vs. any varying parameter or other signal

 ω Parity Sums IPO Slopes Red Dots: > 3.39 σ . Expect 0.5 by chance

Statistical distribution of diagnostic signals for systematic errors

Few outliers; all "close" to EDM channel understood and/or controlled

Case study: a nasty systematic error

Intentionally amplified imperfections

<	Non-reversing <i>E</i> -field	Non-reversing <i>B</i> -field
	Ω -doublet reversal laser detuning	Relative detuning of Ω -doublet
	Global laser detuning	Pump & Probe Laser detuning individually
<	Laser beam spatial profile	Laser polarization/ellipticity gradient
	Laser polarization/ellipticity	Probe laser power
	Relative power/pointing of <i>x</i> / <i>y</i> probes	Pump laser power
	Laser beam alignment	AOM settling time
	Molecule beam pointing & position	Beam source variation
	\mathcal{B} -field gradients	\mathcal{B} -field pointing
	Non-reversing \mathcal{B} -field gradients	Non-reversing \mathcal{B} -field pointing
	Simulated leakage current	

Several months to investigate, understand, & suppress one systematic involving these 3 imperfections simultaneously; *all previous EDM data discarded*

Example systematic: ellipticity gradient + intensity gradient + non-reversing *E*-field

Example systematic: ellipticity gradient + intensity gradient + non-reversing *E*-field

Laser ellipticity gradient \Rightarrow time-dependent dark states + laser intensity gradient \Rightarrow nonadiabatic evolution

 \Rightarrow detuning-dependent AC Stark shift in molecule phase

Example systematic: ellipticity gradient + intensity gradient + non-reversing *E*-field

non-reversing \mathcal{E} -field component \Rightarrow DC Stark shift changes when \mathcal{E} -field reverses $\Rightarrow \mathcal{N}, \mathcal{E}$ -odd detuning changes

+detuning-dependent AC Stark shift from laser \Rightarrow EDM-like signal in precession phase

\mathcal{E} and \mathcal{E}_{nr} from microwave spectroscopy

--Measured \mathcal{E}_{nr} <5 mV/cm out of ~100 V/cm everywhere

Suppressing the ellipticity + \mathcal{E}_{nr} systematic

With precise measurement of \mathcal{E}_{nr} (<5 mV/cm), small residual uncertainty: $\delta d_e \sim 0.5 \times 10^{-29} e \cdot cm$

Systematic Error Budget

$(d_e \times 1)$	$0^{-30}e$ cm)
------------------	----------------

	· •	
Parameter	Shift	Uncertainty
\mathcal{E}^{nr} correction	-6.2	5.1
Intrinsic $\Omega_r^{\mathcal{NE}}$ correction	-0.2	12.2
$\phi^{\mathcal{E}}$ correlated effects	-0.1	0.1
Pointing induced $\phi^{\mathcal{N}}$ correlation		9.7
Non-Reversing B-Field (\mathcal{B}_z^{nr})		6.6
Transverse B-Fields $(\mathcal{B}_x^{\mathrm{nr}}, \mathcal{B}_u^{\mathrm{nr}})$		(0.7, 6.6)
B-Field Gradients Total (6)		9.6
Prep/Read Laser Detunings		10.2
\mathcal{N} Switch Detuning		7.5
Floating E-Field V_{offset}		1.2
Total Systematic	-6.5	24.7
		$(\sigma_{stat} = 37)$

- Systematic *shifts* applied only from effects observed to move EDM channel
- Applied shift small compared to uncertainties

Many upgrades planned for ACME signal size

- Electrostatic focusing of molecular beam: ~20x (***)
- Stimulated vs. spontaneous state prep: ~8x (***)
- Thermochemical beam source ~10-50x (**)
- New fluorescence collection & detectors ~4-10x (*)
- Cycling fluorescence ~3-10x (*)
- Longer integration time ~10-100x

(***) = fully characterized in auxiliary tests
(**) = partially characterized
(*) = preliminary observations and/or theory estimates

>300x gain in \sqrt{N} appears feasible ultimately

Electrostatic Quadrupole Lens: Focused Molecular Beam

- Well-understood
- ~20× signal (simulation)
- Validated in test apparatus
- Increased transverse acceptance is OK
- Requires efficient state transfer before & after

Coherent state prep: STIRAP vs. optical pumping

- Optical pumping via spontaneous emission
- ~1/8 of J=1 population pumped into final state

- Stimulated drive into final state
- Can be ~100% efficient (60% in test setup)
- Requires narrow (~kHz) lasers
- Requires new, orthogonal laser beam path
- New systematics seem controllable
- Scattered 690 nm laser light...?

New method for producing ThO vapor for beam

New source chamber with better cryocooling under construction; target development needed for dust control

New electron EDM limit from ACME

Extra Slides

New limit on electron-nucleon psuedoscalar-scalar interaction

Searching for new physics with electron EDM

Spin detection signal time scales

AC Stark shift in near-resonant light

Coherent state prep: STIRAP vs. optical pumping

ACME 2nd Generation: Under construction

