The ACME Electron EDM Search

Adam West, Yale (UCLA)

40

Disclaimer/Advert

Rotation Sensing with Trapped Ions

<u>Outline</u>

• Motivation

Result

•

•

Outlook

- Apparatus
- Systematics

New limit on d_e

Impact

•

•

Motivation

$$H = -d_e \vec{\sigma} \cdot \vec{\mathcal{E}} \xrightarrow{P} -d_e \vec{\sigma} \cdot (-\vec{\mathcal{E}}) = -H$$
$$\xrightarrow{T} -d_e (-\vec{\sigma}) \cdot \vec{\mathcal{E}} = -H$$

EDMs of fundamental particles violate both P and T, and hence CP

Baryogenesis needed to explain observed matter-antimatter asymmetry

Sakharov showed this requires (beyond-SM) CP-violation

CP Violation

CP-violation from CKM matrix predicts d_e of 10⁻⁴⁴ e.cm¹

Our sensitivity is around 10⁻²⁹ e.cm – SM background free

By contrast, CKM expected to generate neutron EDM of 10^{-31} - 10^{-32} e.cm (current limit 3 x 10^{-26} e.cm)²

¹Phys. Rev. D **89**, 056006 (2014) ²Phys. Rev. D **92**, 092003 (2015)

CP Violation

CKM CP-violation signal could also arise from SM electron-nucleon interaction.

Characterised by coupling constant:

 $C_{S} \sim 10^{-19}$

Recasting as an 'equivalent' electron EDM:

 $d_e \sim 10^{-38} e.cm^1$

Dominant SM CP-violating signal actually from this type of interaction

Still well below current experimental sensitivity

¹Phys. Rev. D **89**, 056006 (2014)

<u>CP Violation</u>

 θ_{QCD} is potential source of CP-violation, but neutron EDM much more sensitive

Current limits on θ_{QCD} give a contribution to d_e similar to those from CKM

SM + Majorana neutrinos can tune d_e to be much higher^{1,2}

¹Phys. Rev. D **70**, 073006 ²Phys. Rev. D **89**, 091901(R)

CP Violation

In beyond-SM theories, CP violation can enter generically

The mass scale of BSM physics and d_e can be estimated via¹

$$\Lambda^2 \sim e rac{m_e}{d_e} iggl(rac{lpha}{2\pi} iggr)^n \sin \phi_{
m CP}$$

ACME I: $|d_e| \leq 9.4 \times 10^{-29} e \text{ cm} (90\% \text{ conf. level}).$

Probe of new physics at Λ ~10 TeV (1 TeV) for 1 loop (2 loop)

¹Prog. Part. Nucl. Phys. **71**, 21 (2013)

Motivation

Work so far

-12 ⋇ -14 × X -16 H spectr. e scatt. -18 $\mathrm{Log}(d_e)~(e\cdot\mathrm{cm})$ Heavy atoms -20 × Molecules -22 \times JILA, HfF⁺ ICL, YbF -24 × × ACME I ACME II -26 X × X × -28 X -30 1960 1970 1980 1990 2000 2010 2020 Year

Huge enhancement afforded by heavy atoms/molecules

<u>ThO</u>

In ACME, we use Thorium Monoxide (ThO) – why?

High Effective E-field

- Schiff's theorem implies zero E-field inside molecule
- Evaded in relativistic limit
- Heavy Th nucleus gives E_{eff} of 80 GV/cm^{1,2}
- 'Omega Doublets'
 - Closely spaced levels, separated by ~100 kHz
 - Easily polarized by external E-field (energy shift ~100 MHz)
 - Opposite levels have opposite E_{eff} spectroscopic reversal of E_{eff}

Small Magnetic Moment

Long Coherence Time

• ~1 ms

Statistical sensitivity: $\delta d_e = (2\tau \mathcal{E}_{eff}\sqrt{N})^{-1}$

¹J. Chem. Phys. **145**, 214301 (2016) ²J. Chem. Phys. **145**, 214307 (2016)

The ACME Electron EDM Search SLAC – 1/29/2019

<u>High Flux</u>

Extracting the Signal

$$H = -d_e \mathcal{E}_{\text{eff}} + \mu_B g B + \dots$$

Need to know/control B, g, ... with 10⁻⁸ fractional uncertainty

We use switches to isolate the EDM interaction:

$$\begin{split} H = -d_e \mathcal{E}_{\rm eff} \tilde{\mathcal{N}} \tilde{\mathcal{E}} + \mu_{\rm B} g B \tilde{\mathcal{B}} \\ & \text{Molecule} \\ & \text{orientation} \end{split} \text{ E-field direction } \text{B-field direction} \end{split}$$

We look for an interaction that **only** changes with $\tilde{\mathcal{N}}$ nd $\tilde{\mathcal{E}}$

Ablation of ThO₂ target yields ThO in ground state, $|X\rangle$

Cryogenic buffer gas beam produced

Optically pumped into rotational ground state, $|X, J = 0\rangle$

Spin precesses in applied E- and B-fields:

$$e^{-i\phi/2} |M = -1\rangle \pm e^{i\phi/2} |M = +1\rangle$$

Read out spin alignment via optical pumping

Laser polarization prescribes spin projection addressed, e.g. 'X/Y' excite $|M = -1\rangle \pm |M = +1\rangle$ ig fluorescence signals S_{X/Y}

Rapidly alternate polarization:

$$S_X \propto \cos^2(\phi - \theta), \quad S_Y \propto \sin^2(\phi - \theta)$$

Form asymmetry:

$$\mathcal{A} = \frac{S_X - S_Y}{S_X + S_Y} \propto \cos(2(\phi - \theta))$$

From the asymmetry we extract the phase ϕ .

<u>Apparatus</u>

Different contributions to the phase we measure behave differently when we perform switches:

$$\phi(\tilde{\mathcal{N}}, \tilde{\mathcal{E}}, \tilde{\mathcal{B}}) = \phi^{nr} + \phi^{\tilde{\mathcal{N}}} \tilde{\mathcal{N}} + \phi^{\tilde{\mathcal{E}}} \tilde{\mathcal{E}} + \phi^{\tilde{\mathcal{N}}} \tilde{\mathcal{B}} + \phi^{\tilde{\mathcal{N}}} \tilde{\mathcal{E}} \tilde{\mathcal{N}} \tilde{\mathcal{E}} + \phi^{\tilde{\mathcal{N}}} \tilde{\mathcal{E}} \tilde{\mathcal{B}} + \phi^{\tilde{\mathcal{N}}} \tilde{\mathcal{E}} \tilde{\mathcal{B}} + \phi^{\tilde{\mathcal{N}}} \tilde{\mathcal{E}} \tilde{\mathcal{B}} + \phi^{\tilde{\mathcal{N}}} \tilde{\mathcal{E}} \tilde{\mathcal{B}} \tilde{\mathcal{E}} \tilde{\mathcal{B}} \tilde{\mathcal{E}} \tilde{\mathcal{B}} \tilde{\mathcal{E}} \tilde{\mathcal{B}} \tilde{\mathcal{E}} \tilde{\mathcal{B}} \tilde{\mathcal{E}} \tilde{\mathcal{B}} \tilde{\mathcal{E}} \tilde{\mathcal{$$

Six switches necessary for an EDM measurement:

Many more switches/knobs to hunt for systematic effects

$$H_{ ext{eEDM}} = -d_e \mathcal{E}_{ ext{eff}} \tilde{\mathcal{N}} \tilde{\mathcal{E}}$$
 E-field direction
 $|d_e|$ Molecule

orientation

- Nothing we do should change $|d_e|$
 - Exaggerate some experimental parameter, *P*
 - Measure the change of the eEDM channel
 - Fit dependence
 - Measure typical variation of *P*
 - Compute corresponding uncertainty of eEDM channel

$$\delta\omega_P^{\mathcal{N}\mathcal{E}} = \sqrt{\left(\frac{\partial\omega^{\mathcal{N}\mathcal{E}}}{\partial P} \ \delta\bar{P}\right)^2 + \left(\bar{P} \ \delta\frac{\partial\omega^{\mathcal{N}\mathcal{E}}}{\partial P}\right)^2}$$

Varied far from typical values

No 'ideal' value

Category I parametersLimit < $\sigma_{stat.}$ Category II parametersMagnetic fields $\frac{\partial B_s}{\partial y}$, $\frac{\partial B_s}{\partial x}$, $$			
Magnetic fields \mathcal{B} -field gradients (in rand $\hat{\mathcal{B}}$): $\frac{\partial \mathcal{B}_{x}}{\partial y}$, $\frac{\partial \mathcal{B}_{x}}{\partial y}$, $\frac{\partial \mathcal{B}_{x}}{\partial x}$, $\frac{\partial \mathcal{B}_{x}}{\partial$	Category I parameters	Limit $< \sigma_{\text{stat.}}$	Category II parameters
\mathcal{B} -field gradients (ur and $\hat{\mathcal{B}}$): $\frac{\partial \mathcal{B}_{x}}{\partial y}$, $\frac{\partial \mathcal{B}_{x}}{\partial x}$, $\frac{\partial \mathcal{B}_{x}}{\partial y}$, $\frac{\partial \mathcal{B}_{x}}{\partial x}$, <t< td=""><td>Magnetic fields</td><td>1</td><td>Experiment timing</td></t<>	Magnetic fields	1	Experiment timing
Non-reversing \mathcal{B} -fields: \mathcal{B}_{1}^{pr} , \mathcal{B}_{1}^{pr} \checkmark Transverse \mathcal{B} -fields: \mathcal{B}_{2}^{pr} , \mathcal{B}_{2}^{pr} \checkmark Transverse \mathcal{B} -fields: \mathcal{B}_{2}^{pr} , \mathcal{B}_{2}^{pr} \checkmark Sc-orrelated \mathcal{B} -field: \mathcal{B}_{2}^{pr} \checkmark Electric fields \checkmark Non-reversing \mathcal{E} -field: \mathcal{E}^{pr} \checkmark Field plate \mathcal{B} -field: \mathcal{B}_{2}^{pr} \checkmark Iaser detunings \checkmark Detuning of refinement and readout lasers: Δ_{ref} , Δ_{read} \checkmark \mathcal{F} -correlated detuning: $\Delta^{\mathcal{P}}$ \checkmark \mathcal{N} -correlated detuning: $\Delta^{\mathcal{P}}$ \checkmark \mathcal{N} -correlated power: $\mathcal{P}^{N\mathcal{E}}$ \checkmark \mathcal{N} -correlated power: $\mathcal{P}^{N\mathcal{E}}$ \checkmark \mathcal{N} -correlated power: $\mathcal{P}^{\mathcal{N}}$ \checkmark \mathcal{N} -correlated power: $\mathcal{P}^{\mathcal{N}}$ \checkmark \mathcal{N} -correlated power: $\mathcal{P}^{\mathcal{N}}$ \checkmark Readout X- and Y-dependent laser pointing \checkmark Pointing change of the refinement and readout lasers: \checkmark \mathcal{N} -correlated power: $\mathcal{P}^{\mathcal{N}}$ \checkmark \mathcal{N} -correlated power: $\mathcal{P}^{\mathcal{N}}$ \checkmark \mathcal{N} -correlated power: $\mathcal{P}^{\mathcal{N}}$ \checkmark Readout X- and Y-dependent laser pointing \checkmark Pointing change of the refinement and readout lasers \checkmark Readout X- and Y-dependent laser pointing \checkmark Pointing change of the refinement and readout lasers \checkmark Readout X- and Y-dependent laser pointing \checkmark Pointing change of the refinement and readout lasers \checkmark Readout X- and Y-dependent laser pointing \checkmark	\mathcal{B} -field gradients (nr and $\tilde{\mathcal{B}}$): $\frac{\partial \mathcal{B}_z}{\partial z}, \frac{\partial \mathcal{B}_z}{\partial x}, \frac{\partial \mathcal{B}_x}{\partial x}, \frac{\partial \mathcal{B}_y}{\partial x}, \frac{\partial \mathcal{B}_y}{\partial x}, \frac{\partial \mathcal{B}_z}{\partial x}$	\checkmark	Readout X and Y polarization switching rate
Transverse \mathcal{B} -fields: \mathcal{B}_{x}^{p} , \mathcal{B}_{y}^{nr} \checkmark Analysis $\tilde{\mathcal{E}}$ -correlated \mathcal{B} -field: \mathcal{B}_{x}^{b} \checkmark Spatial dependence of fluorescence recorded by the 8 PMTs $\tilde{\mathcal{E}}$ -correlated \mathcal{B} -field: \mathcal{B}_{x}^{b} \checkmark Spatial dependence of fluorescence recorded by the 8 PMTs $\tilde{\mathcal{E}}$ -correlated \mathcal{B} -field: \mathcal{E}^{nr} \checkmark \checkmark Field plate ground voltage offset \checkmark \checkmark Laser detunings \checkmark \checkmark Detuning of refinement and readout lasers: Δ_{ref} , Δ_{read} \checkmark $\tilde{\mathcal{F}}$ -correlated detuning: $\Delta^{\mathcal{P}}$ \checkmark $\tilde{\mathcal{F}}$ -correlated detuning: $\Delta^{\mathcal{P}}$ \checkmark $\tilde{\mathcal{F}}$ -correlated detuning: $\Delta^{\mathcal{P}}$ \checkmark $\tilde{\mathcal{F}}$ -correlated power: $\mathcal{P}^{\tilde{\mathcal{N}}}$ \checkmark $\tilde{\mathcal{N}}$ -correlated power: $\mathcal{P}^{\tilde{\mathcal{N}}}$ \checkmark $\tilde{\mathcal{P}}$ -correlated power: $\mathcal{P}^{\tilde{\mathcal{N}}}$ \sim $\tilde{\mathcal{P}$ -correlated power: $\mathcal{P}^{\tilde{\mathcal{N}}}$ \overset	Non-reversing \mathcal{B} -fields: \mathcal{B}_{z}^{nr}	\checkmark	Allowed settling time between block switches
Transverse \mathcal{B} -fields: $\mathcal{B}_{x}^{\tilde{P}}$, $\mathcal{B}_{y}^{\tilde{P}}$ \mathbf{x} Signal size cuts, magnitude cuts, contrast cuts $\tilde{\mathcal{E}}$ -correlated \mathcal{B} -field: $\mathcal{B}_{z}^{\tilde{x}}$ \checkmark Spatial dependence of fluorescence recorded by the 8 PMTs Electric fields \checkmark \checkmark Variation with time within the molecular pulseNon-reversing \mathcal{E} -field: $\mathcal{E}^{\mathrm{tr}}$ \checkmark \checkmark Field plate ground voltage offset \checkmark \checkmark Laser detunings \checkmark \checkmark Detuning of refinement and readout lasers: Δ_{red} \checkmark $\tilde{\mathcal{P}}$ -correlated detuning: $\Delta^{\mathcal{P}}$ \checkmark $\tilde{\mathcal{P}}$ -correlated detuning: $\Delta^{\mathcal{N}}$ \checkmark $\tilde{\mathcal{P}}$ -correlated detuning: $\Delta^{\mathcal{N}}$ \checkmark $\tilde{\mathcal{N}}$ -correlated power: $P^{\tilde{\mathcal{N}}\tilde{\mathcal{E}}}$ \checkmark Nerversing $\mathcal{F}_{\mathrm{ref}}$, P_{read} \star $\tilde{\mathcal{N}}$ -correlated power: $P^{\tilde{\mathcal{N}}\tilde{\mathcal{E}}}$ \checkmark Powers of refinement and readout lasers: P_{ref} , P_{read} \star $\tilde{\mathcal{N}}$ -correlated power: $P^{\tilde{\mathcal{N}}\tilde{\mathcal{E}}}$ \checkmark Pointing change of the refinement and readout lasers: P_{ref} , P_{read} \star $\tilde{\mathcal{N}}$ -correlated power: $P^{\tilde{\mathcal{P}}}$ \star $\tilde{\mathcal{P}}$ -correlated power: $P^{\tilde{\mathcal{N}}\tilde{\mathcal{E}}$ \checkmark $\tilde{\mathcal{P}}$ -correlated power: $P^{\tilde{\mathcal{N}}\tilde{\mathcal{E}}}$ \checkmark Power of refinement and readout lasers: P_{ref} , P_{read} \star $\tilde{\mathcal{P}}$ -correlated power: $P^{\tilde{\mathcal{P}}}$ \star Readout X - and Y -dependent laser power \star Pointing change of the refinement and readout lasers \star Readout X - and Y -dependent laser poi	Transverse \mathcal{B} -fields: \mathcal{B}_{x}^{nr} , \mathcal{B}_{u}^{nr}	\checkmark	Analysis
$\tilde{\mathcal{E}}$ -correlated \mathcal{B} -field: $\tilde{\mathcal{E}}_{2}^{nr}$ \checkmark Spatial dependence of fluorescence recorded by the 8 PMTs Electric fields \checkmark \checkmark Spatial dependence of fluorescence recorded by the 8 PMTsNon-reversing \mathcal{E} -field: \mathcal{E}^{nr} \checkmark \checkmark Variation with time within the X and Y polarization cycleField plate ground voltage offset \checkmark \checkmark Search for correlations with all ω and \mathcal{C} parity componentsLaser detunings Δ^{P} \checkmark \checkmark $\tilde{\mathcal{P}}$ -correlated detuning: Δ^{P} \checkmark \checkmark Λ -correlated detuning: Δ^{N} \checkmark \checkmark Detuning of rotational cooling lasers \checkmark \checkmark Laser powers \checkmark \checkmark $\tilde{\mathcal{N}}^{\tilde{\mathcal{E}}}$ -correlated power: $P^{\tilde{\mathcal{N}}^{\tilde{\mathcal{E}}}}$ \checkmark Power of refinement and readout lasers: P_{ref} , P_{read} \checkmark $\tilde{\mathcal{N}}$ -correlated power: $P^{\tilde{\mathcal{N}}^{\tilde{\mathcal{E}}}}$ \checkmark Power of refinement and readout lasers: P_{ref} , P_{read} \varkappa $\tilde{\mathcal{N}}$ -correlated power: $P^{\tilde{\mathcal{N}}^{\tilde{\mathcal{E}}}}$ \checkmark Power of refinement and readout lasers: P_{ref} , P_{read} \varkappa $\tilde{\mathcal{N}}$ -correlated power: $P^{\tilde{\mathcal{N}}}$ \varkappa Pointing change of the refinement and readout lasers \varkappa Readout X- and Y-dependent laser pointing \checkmark Position of refinement beam along \hat{x} \checkmark Pointing the molecular beam along \hat{x} \checkmark Clipping of the molecular beam along \hat{y} and \hat{z} \checkmark	Transverse \mathcal{B} -fields: $\mathcal{B}^{\tilde{\mathcal{B}}}_{,\mathcal{B}}$, $\mathcal{B}^{\tilde{\mathcal{B}}}_{,\mathcal{B}}$	×	Signal size cuts, magnitude cuts, contrast cuts
Electric fieldsVNon-reversing \mathcal{E} -field: \mathcal{E}^{nr} ✓Field plate ground voltage offset✓Laser detunings✓Detuning of refinement and readout lasers: Δ_{ref} , Δ_{read} ✓1-photon, 2-photon detunings of STIRAP lasers✓ $\tilde{\mathcal{P}}$ -correlated detuning: $\Delta^{\mathcal{P}}$ ✓ $\tilde{\mathcal{N}}$ -correlated detuning: $\Delta^{\mathcal{N}}$ ✓Detuning of rotational cooling lasers✓Laser powers✓ $\tilde{\mathcal{N}}^{\tilde{\mathcal{E}}}$ -correlated power: $P^{\tilde{\mathcal{N}}}$ ✓ $\tilde{\mathcal{N}}$ -correlated power: $P^{\tilde{\mathcal{N}}}$ × $\tilde{\mathcal{N}}$ -correlated power: $P^{\tilde{\mathcal{N}}}$ × $\tilde{\mathcal{N}}$ -correlated power: $P^{\tilde{\mathcal{N}}}$ × $\tilde{\mathcal{N}}$ -correlated power: $P^{\tilde{\mathcal{P}}}$ × $\tilde{\mathcal{N}}$ -correlated power: $P^{\tilde{\mathcal{N}}}$ × $\tilde{\mathcal{N}}$ -correla	$\tilde{\mathcal{E}}$ -correlated \mathcal{B} -field: $\mathcal{B}^{\tilde{\mathcal{E}}}$	1	Spatial dependence of fluorescence recorded by the 8 PMTs
Non-reversing \mathcal{E} -field: \mathcal{E}^{nr} \checkmark Field plate ground voltage offset \checkmark Laser detunings \bigtriangleup Detuning of refinement and readout lasers: $\Delta_{ref,} \Delta_{read}$ \checkmark I -photon, 2-photon detunings of STIRAP lasers \checkmark $\tilde{\mathcal{P}}$ -correlated detuning: $\Delta^{\mathcal{P}}$ \checkmark $\tilde{\mathcal{P}}$ -correlated detuning: $\Delta^{\mathcal{N}}$ \checkmark Detuning of rotational cooling lasers \checkmark Laser powers \checkmark $\tilde{\mathcal{N}}^{\tilde{\mathcal{E}}}$ -correlated power: $P^{\tilde{\mathcal{N}}^{\tilde{\mathcal{E}}}}$ \checkmark $\tilde{\mathcal{N}}$ -correlated power: $P^{\tilde{\mathcal{N}}}$ \checkmark $\tilde{\mathcal{P}}$ -correlated power: $P^{\tilde{\mathcal{P}}}$ \checkmark $\tilde{\mathcal{N}}$ -correlated power: $P^{\tilde{\mathcal{P}}}$ \checkmark $\tilde{\mathcal{N}}$ -correlated power: $P^{\tilde{\mathcal{P}}}$ \checkmark $\tilde{\mathcal{N}}$ -correlated power: $P^{\tilde{\mathcal{P}}}$ \checkmark $\tilde{\mathcal{P}}$ -correlated power: \mathcal{P} \checkmark $\tilde{\mathcal{P}}$ -correlated power predint laser power \checkmark <t< td=""><td>Electric fields</td><td></td><td>Variation with time within the molecular pulse</td></t<>	Electric fields		Variation with time within the molecular pulse
Field plate ground voltage offset \checkmark Laser detunings \checkmark Detuning of refinement and readout lasers: Δ_{ref} , Δ_{read} \checkmark 1-photon, 2-photon detunings Δ^P \checkmark \tilde{P} -correlated detuning: Δ^N \checkmark \tilde{N} -correlated detuning: Δ^N \checkmark Detuning of rotational cooling lasers \checkmark $\tilde{N}\tilde{\mathcal{E}}$ -correlated power: $P^{\tilde{N}\tilde{\mathcal{E}}}$ \checkmark Power of refinement and readout lasers: P_{ref} , P_{read} \checkmark \tilde{N} -correlated power: $P^{\tilde{N}}$ \checkmark \tilde{P} -correlated power: $P^{\tilde{N}}$ \checkmark \tilde{N} -correlated power: $P^{\tilde{N}}$ \times Readout X- and Y-dependent laser power \times Readout X- and Y-dependent laser pointing \checkmark Position of refinement and neadout lasers \times Position of refinement beam along \hat{x} \checkmark Molecular beam clipping \checkmark Clipping of the molecular beam along \hat{x} and \hat{z} \checkmark	Non-reversing \mathcal{E} -field: \mathcal{E}^{nr}	\checkmark	Variation with time within the X and Y polarization cycle
Laser detunings Detuning of refinement and readout lasers: Δ_{ref} , Δ_{read} \hat{P} -correlated detuning: $\Delta^{\mathcal{P}}$ \checkmark \widehat{V} Search for correlations with auxiliary monitored parameters Four sets of analysis codes by different people \hat{N} -correlated detuning: $\Delta^{\mathcal{P}}$ \checkmark \checkmark \hat{N} -correlated detuning: $\Delta^{\mathcal{N}}$ \checkmark \checkmark Detuning of rotational cooling lasers \checkmark \checkmark Laser powers \checkmark \checkmark $\hat{N}\tilde{\mathcal{E}}$ -correlated power: $P^{\tilde{N}\tilde{\mathcal{E}}}$ \checkmark \hat{V} -correlated power: $P^{\tilde{N}}$ \checkmark \hat{P} -correlated power: $P^{\tilde{N}}$ \bigstar Readout X - and Y -dependent laser power \bigstar Laser pointings/position along \hat{x} \checkmark Position of refinement beam along \hat{x} \checkmark Molecular beam clipping Clipping of the molecular beam along \hat{y} and \hat{z} \checkmark	Field plate ground voltage offset	\checkmark	Search for correlations with all ω and \mathcal{C} parity components
Detuning of refinement and readout lasers: Δ_{ref} , Δ_{read} \checkmark 1-photon, 2-photon detunings of STIRAP lasers \checkmark \tilde{P} -correlated detuning: Δ^P \checkmark \tilde{N} -correlated detuning: Δ^N \checkmark Detuning of rotational cooling lasers \checkmark $\tilde{N}\tilde{\mathcal{E}}$ -correlated power: $P^{\tilde{N}\tilde{\mathcal{E}}}$ \checkmark \tilde{N} -correlated power: $P^{\tilde{N}\tilde{\mathcal{E}}}$ \checkmark \tilde{N} -correlated power: $P^{\tilde{N}}$ \times \tilde{N} -correlated pow	Laser detunings	1	Search for correlations with auxiliary monitored parameters
1-photon, 2-photon detunings of STIRAP lasers \checkmark $\tilde{\mathcal{P}}$ -correlated detuning: $\Delta^{\mathcal{P}}$ \checkmark $\tilde{\mathcal{N}}$ -correlated detuning: $\Delta^{\mathcal{N}}$ \checkmark Detuning of rotational cooling lasers \checkmark Laser powers \checkmark $\tilde{\mathcal{N}}\tilde{\mathcal{E}}$ -correlated power: $P^{\tilde{\mathcal{N}}\tilde{\mathcal{E}}}$ \checkmark Power of refinement and readout lasers: P_{ref} , P_{read} \varkappa $\tilde{\mathcal{N}}$ -correlated power: $P^{\tilde{\mathcal{N}}}$ \varkappa $\tilde{\mathcal{P}}$ -correlated power: $P^{\tilde{\mathcal{P}}}$ \varkappa Readout X - and Y -dependent laser power \varkappa Pointing change of the refinement and readout lasers \varkappa Position of refinement beam along \hat{x} \checkmark Molecular beam clipping \checkmark Clipping of the molecular beam along \hat{y} and \hat{z} \checkmark	Detuning of refinement and readout lasers: Δ_{ref} , Δ_{read}	\checkmark	Four sets of analysis codes by different people
$\tilde{\mathcal{P}}$ -correlated detuning: $\Delta^{\mathcal{P}}$ \checkmark $\tilde{\mathcal{N}}$ -correlated detuning: $\Delta^{\mathcal{N}}$ \checkmark Detuning of rotational cooling lasers \checkmark Laser powers \checkmark $\tilde{\mathcal{N}}\tilde{\mathcal{E}}$ -correlated power: $P^{\tilde{\mathcal{N}}\tilde{\mathcal{E}}}$ \checkmark Power of refinement and readout lasers: P_{ref} , P_{read} \checkmark $\tilde{\mathcal{N}}$ -correlated power: $P^{\tilde{\mathcal{N}}}$ \checkmark $\tilde{\mathcal{P}}$ -correlated power: $P^{\tilde{\mathcal{N}}}$ \checkmark $\tilde{\mathcal{P}}$ -correlated power: $P^{\tilde{\mathcal{N}}}$ \bigstar $\tilde{\mathcal{P}}$ -correlated power: $P^{\tilde{\mathcal{P}}}$ \bigstar $\tilde{\mathcal{P}}$ -correlated power: $P^{\tilde{\mathcal{P}}}$ \bigstar Readout X- and Y-dependent laser power \bigstar Pointing change of the refinement and readout lasers \bigstar Readout X- and Y-dependent laser pointing \checkmark Position of refinement beam along \hat{x} \checkmark Molecular beam clipping \checkmark Clipping of the molecular beam along \hat{y} and \hat{z} \checkmark	1-photon, 2-photon detunings of STIRAP lasers	\checkmark	
$\tilde{\mathcal{N}}$ -correlated detuning: $\Delta^{\mathcal{N}}$ \checkmark In general, require at least twoLaser powers \checkmark simultaneous imperfections to mimic EDM $\tilde{\mathcal{N}}\tilde{\mathcal{E}}$ -correlated power: $P^{\tilde{\mathcal{N}}\tilde{\mathcal{E}}}$ \checkmark simultaneous imperfections to mimic EDM $\tilde{\mathcal{N}}$ -correlated power: $P^{\tilde{\mathcal{N}}}$ \checkmark \checkmark $\tilde{\mathcal{N}}$ -correlated power: $P^{\tilde{\mathcal{N}}}$ \checkmark \checkmark $\tilde{\mathcal{N}}$ -correlated power: $P^{\tilde{\mathcal{P}}}$ \varkappa \checkmark $\tilde{\mathcal{P}}$ -correlated power: $P^{\tilde{\mathcal{P}}}$ \varkappa Readout X- and Y-dependent laser power \varkappa Pointing change of the refinement and readout lasers \varkappa Readout X- and Y-dependent laser pointing \checkmark Position of refinement beam along \hat{x} \checkmark Molecular beam clipping \checkmark Clipping of the molecular beam along \hat{y} and \hat{z} \checkmark	$\tilde{\mathcal{P}}$ -correlated detuning: $\Delta^{\mathcal{P}}$	\checkmark	
Detuning of rotational cooling lasers \mathbf{x} In generative detriction of the finance of the efficience detriction of the molecular beam along \hat{y} and \hat{z} Detuning of rotational cooling lasers \mathbf{x} Laser powers \checkmark $\tilde{\mathcal{N}}$ -correlated power: $P^{\tilde{\mathcal{N}}}$ \mathbf{x} $\tilde{\mathcal{N}}$ -correlated power: $P^{\tilde{\mathcal{N}}}$ \mathbf{x} $\tilde{\mathcal{P}}$ -correlated power: $P^{\tilde{\mathcal{P}}}$ \mathbf{x} $\tilde{\mathcal{P}}$ -correlated power: $P^{\tilde{\mathcal{P}}}$ \mathbf{x} Readout X- and Y-dependent laser power \mathbf{x} Pointing change of the refinement and readout lasers \mathbf{x} Readout X- and Y-dependent laser pointing \mathbf{x} Position of refinement beam along \hat{x} \checkmark	$\tilde{\mathcal{N}}$ -correlated detuning: $\Delta^{\mathcal{N}}$	\checkmark	In general require at least two
Laser powersSimultaneous impertections to mimic EDM $\tilde{\mathcal{N}}\tilde{\mathcal{E}}$ -correlated power: $P^{\tilde{\mathcal{N}}\tilde{\mathcal{E}}}$ \checkmark Power of refinement and readout lasers: P_{ref} , P_{read} \varkappa $\tilde{\mathcal{N}}$ -correlated power: $P^{\tilde{\mathcal{P}}}$ \varkappa $\tilde{\mathcal{P}}$ -correlated power: $P^{\tilde{\mathcal{P}}}$ \varkappa Readout X- and Y-dependent laser power \varkappa Pointing change of the refinement and readout lasers \varkappa Readout X- and Y-dependent laser pointing \varkappa Position of refinement beam along \hat{x} \checkmark Position of refinement beam along \hat{x} \checkmark Clipping of the molecular beam along \hat{y} and \hat{z} \checkmark	Detuning of rotational cooling lasers	×	
$\tilde{\mathcal{N}}\tilde{\mathcal{E}}$ -correlated power: $P^{\tilde{\mathcal{N}}\tilde{\mathcal{E}}}$ \checkmark Power of refinement and readout lasers: P_{ref} , P_{read} \mathbf{x} $\tilde{\mathcal{N}}$ -correlated power: $P^{\tilde{\mathcal{N}}}$ \mathbf{x} $\tilde{\mathcal{P}}$ -correlated power: $P^{\tilde{\mathcal{P}}}$ \mathbf{x} Readout X- and Y-dependent laser power \mathbf{x} Pointing change of the refinement and readout lasers \mathbf{x} Readout X- and Y-dependent laser pointing \mathbf{x} Position of refinement beam along \hat{x} \checkmark Position of refinement beam along \hat{x} \checkmark Clipping of the molecular beam along \hat{y} and \hat{z} \checkmark	Laser powers		simultaneous imperfections to mimic EDM
Power of refinement and readout lasers: P_{ref} , P_{read} X $\tilde{\mathcal{N}}$ -correlated power: $P^{\tilde{\mathcal{N}}}$ X $\tilde{\mathcal{P}}$ -correlated power: $P^{\tilde{\mathcal{P}}}$ XReadout X- and Y-dependent laser powerXLaser pointings/position along \hat{x} XPointing change of the refinement and readout lasersXReadout X- and Y-dependent laser pointingXPosition of refinement beam along \hat{x} XMolecular beam clipping✓Clipping of the molecular beam along \hat{y} and \hat{z} ✓	$\tilde{\mathcal{N}}\tilde{\mathcal{E}}$ -correlated power: $P^{\tilde{\mathcal{N}}\tilde{\mathcal{E}}}$	\checkmark	
$\tilde{\mathcal{N}}$ -correlated power: $P^{\tilde{\mathcal{N}}}$ \mathbf{X} $\tilde{\mathcal{P}}$ -correlated power: $P^{\tilde{\mathcal{P}}}$ \mathbf{X} Readout X- and Y-dependent laser power \mathbf{X} Laser pointings/position along \hat{x} \mathbf{X} Pointing change of the refinement and readout lasers \mathbf{X} Readout X- and Y-dependent laser pointing \mathbf{X} Position of refinement beam along \hat{x} \mathbf{X} Molecular beam clipping \mathbf{X} Clipping of the molecular beam along \hat{y} and \hat{z} \mathbf{V}	Power of refinement and readout lasers: $P_{\rm ref}$, $P_{\rm read}$	×	
$\tilde{\mathcal{P}}$ -correlated power: $P^{\tilde{\mathcal{P}}}$ \mathbf{x} Readout X- and Y-dependent laser power \mathbf{x} Laser pointings/position along \hat{x} \mathbf{x} Pointing change of the refinement and readout lasers \mathbf{x} Readout X- and Y-dependent laser pointing \mathbf{x} Position of refinement beam along \hat{x} \checkmark Molecular beam clipping \checkmark Clipping of the molecular beam along \hat{y} and \hat{z} \checkmark	$\tilde{\mathcal{N}}$ -correlated power: $P^{\tilde{\mathcal{N}}}$	×	
Readout X- and Y-dependent laser powerXLaser pointings/position along \hat{x} XPointing change of the refinement and readout lasersXReadout X- and Y-dependent laser pointingXPosition of refinement beam along \hat{x} \checkmark Molecular beam clipping \checkmark Clipping of the molecular beam along \hat{y} and \hat{z} \checkmark	$\tilde{\mathcal{P}}$ -correlated power: $P^{\tilde{\mathcal{P}}}$	×	
Laser pointings/position along \hat{x} \mathbf{X} Pointing change of the refinement and readout lasers \mathbf{X} Readout X- and Y-dependent laser pointing \mathbf{X} Position of refinement beam along \hat{x} \checkmark Molecular beam clipping \checkmark Clipping of the molecular beam along \hat{y} and \hat{z} \checkmark	Readout X - and Y -dependent laser power	×	
Pointing change of the refinement and readout lasers \mathbf{X} Readout X- and Y-dependent laser pointing \mathbf{X} Position of refinement beam along \hat{x} \checkmark Molecular beam clipping \checkmark Clipping of the molecular beam along \hat{y} and \hat{z} \checkmark	Laser pointings/position along \hat{x}		
Readout X- and Y-dependent laser pointing \bigstar Position of refinement beam along \hat{x} \checkmark Molecular beam clipping \checkmark Clipping of the molecular beam along \hat{y} and \hat{z} \checkmark	Pointing change of the refinement and readout lasers	×	
Position of refinement beam along \hat{x} \checkmark Molecular beam clipping \checkmark Clipping of the molecular beam along \hat{y} and \hat{z} \checkmark	Readout X - and Y -dependent laser pointing	×	
Molecular beam clipping \hat{y} and \hat{z} \checkmark Clipping of the molecular beam along \hat{y} and \hat{z} \checkmark	Position of refinement beam along \hat{x}	\checkmark	
Clipping of the molecular beam along \hat{y} and \hat{z} \checkmark	Molecular beam clipping		
	Clipping of the molecular beam along \hat{y} and \hat{z}	✓	

Example systematic

- Recall, E-field splits the N states
- E^{nr} produces an E-field magnitude correlated with $\tilde{\mathcal{N}} \mathsf{and}~\tilde{\mathcal{E}}$

The ACME Electron EDM Search SLAC – 1/29/2019

Leads to detuning correlated with $\tilde{\mathcal{N}}_{3}$ nd $\tilde{\mathcal{E}}$

 $\Delta^{\tilde{\mathcal{N}}\tilde{\mathcal{E}}}$

- Molecule beam has correlated transverse velocity/position
- Doppler shift correlated with z
- Normally, beam centre (z=0) read out with higher probability
- Additional detuning shifts preferred position, $z \neq 0$
- B-field gradient gives position-dependent phase

Together with $\Delta^{\tilde{\mathcal{N}}\tilde{\mathcal{E}}}$ this produces an EDM-like systematic

 $\partial B/\partial z$ produces a Larmor precession phase correlated with $\tilde{\mathcal{N}}$ and $\tilde{\mathcal{E}}$

This looks just like the EDM phase!

Large number of data 'channels' examined

	Parameter	Shift	Uncertainty
B-field gradients —	$\rightarrow \partial \mathcal{B}_z / \partial z \text{ and } \partial \mathcal{B}_z / \partial y$	7	59
Imperfect state prep. ———	$\omega_{\rm ST}^{N \mathcal{E}}$ (via $\theta_{\rm ST}^{\rm H-C}$)	0	1
	$P_{\rm ref}^{N\varepsilon}$	-	109
Non-reversing E ———	$\longrightarrow \mathcal{E}^{nr}$	-56	140
5	$ \mathcal{C} ^{\mathcal{NE}}$ and $ \mathcal{C} ^{\mathcal{NEB}}$	77	125
	$\omega^{\mathcal{E}}$ (via $\mathcal{B}_{z}^{\mathcal{E}}$)	1	1
	Other magnetic-field gradients (4)	-	134
	Non-reversing magnetic field, \mathcal{B}_z^{nr}	-	106
	Transverse magnetic fields, \mathcal{B}_{χ}^{nr} , \mathcal{B}_{y}^{nr}	-	92
	Refinement- and readout-laser detunings	-	76
	$ ilde{\mathcal{N}}$ -correlated laser detuning, $ extsf{\Delta}^{\mathcal{N}}$	-	48
	Total systematic	29	310
	Statistical uncertainty		373
	Total uncertainty		486

A couple of effects understood to shift EDM value – accounted for

Included uncertainties are directly or closely related to known systematic effects

Systematics at level of statistical uncertainty

<u>Result</u>

Entire dataset:

- Non-Gaussian character in wings due to excess noise:
 - Electrical pickup in DAQs
 - Electrical pickup in PMTs
 - Beam velocity variation

M-estimator analysis of mean

Bootstrapped sampling to determine uncertainty

<u>Result</u>

All data taking/analysis performed with blind

$$d_e = (4.3 \pm 3.1_{\text{stat}} \pm 2.6_{\text{syst}}) \times 10^{-30} e \text{ cm}$$

Feldman-Cousins construction of confidence interval yields

$$|d_e| < 1.1 \times 10^{-29} e \text{ cm}$$
 (90% C.L.)

CP-violation in ThO also possible from electron-nucleon interaction:

$$\hbar\omega^{\mathcal{NE}} = -d_e \mathcal{E}_{eff} + W_S C_S$$
Molecule specific, calculated^{1,2}

$$-2\pi\hbar \times 282 \text{ kHz}$$
We assume C_S = 0 to compute d_e limit

Assuming d_e = 0 instead:

 $|C_{\rm S}| < 7.3 \times 10^{-10}$ (90% C.L.)

¹J. Chem. Phys. **145**, 214301 (2016) ²J. Chem. Phys. **145**, 214307 (2016)

<u>Result</u>

1-loop SUSY: Selectron

Order unity phases imply several TeV masses

arXiv:1810.07736

1-loop SUSY: Selectron

EDM constrains selectron mass and $\text{tan}\beta$

Measured Higgs mass also constrains

Hint of tension between these data

arXiv:1810.07736

Natural SUSY: Stop

Stop mass constrained to several TeV with reasonably natural phases

Higgs measurement provides complimentary constraint

arXiv:1810.07736

<u>Impact</u>

Significant constraint of CP-violating phases in BMSSM

Degree of constraint depends on Higgs mass, m_A

J. High Energ. Phys. (2017) 2017: 31

<u>Impact</u>

<u>Split SUSY:</u>

Constraints up to the 10 TeV level

Broader coverage than dark matter experiments (assuming neutralino DM)

Impact Baryogenesis in MSSM:

Electroweak baryogenesis in MSSM severely constrained by eEDM¹

Would also require stop to be reasonably light

¹Phys. Lett. B **673**, 95 (2009) ²Phys. Lett. B **790**, 326 (2019)

Axionic baryogenesis much less constrained by eEDM²

Majorana Neutrinos:

eEDM already constrains Majorana neutrinos within Minimum Flavour Violation framework:

ACME measurement constrains MFV energy scale, Λ to ~>1 TeV

'd_e provides best CP-violating probe for $\Lambda^{\prime\,\text{1}}$

Dirac neutrinos produce negligible d_e

¹Phys. Rev. D 89, 091901(R)

Modified from Ann. Rev. Nucl. Part. Sci. 63, 351 (2013)

Future work

Improve statistical sensitivity:

Beam source highly divergent – focus with lens

Electrostatic

Magnetostatic

x7

Future work

Increase molecule flux with 'thermochemical' source

Currently near photoelectron shot noise limit Use optical cycling to reach molecule shot noise limit

Total (optimistic!) gain:

$7 \times 5 \times 6 = 210$

The ACME Electron EDM Search SLAC – 1/29/2019 **x6**

x5

Future work

Conservative estimate of x100 signal would give x10 sensitivity, x3 in energy reach

Need commensurate control over systematics and excess noise

Maybe ~100 TeV will be in reach?...

The Team

Jerry Gabrielse

David DeMille

Funding:

ACME II Alumni: Vitaly Andreev (MPQ) Nick Hutzler (Caltech) Brendon O'Leary (SeatGeek) Adam West (UCLA) Elizabeth West (UCLA)

Cris Panda Zack Lasner Xing Wu Cole Daniel Ang Jonathan Haefner Meisenhelder

