ThO Electron EDM Search: Statistics Update and Understanding Systematic Errors

Elizabeth Petrik Advisor: John Doyle ACME Collaboration, Harvard University April 23, 2013, CUA 10 minute talk

Data compiled by Amar Vutha

• Permanent EDMs violate CP

Experimental Limits on the eEDM $\mathbf{10}^{-10}$ Electron EDM Upper Limit (e cm) $\mathbf{10}^{-15}$ **10**⁻²⁰ Hinds YbF 10^{-25} Supersymmetry 10^{-30} 10^{-35} Standard Model 10^{-40} 1970 1980 1990 2000 2010 1960 Year

Data compiled by Amar Vutha

- Permanent EDMs violate CP
- Standard Model CP violation is highly suppressed for leptons → SM eEDM is unmeasurably small

Experimental Limits on the eEDM

Data compiled by Amar Vutha

- Permanent EDMs violate CP
- Standard Model CP violation is highly suppressed for leptons → SM eEDM is unmeasurably small
- Extensions to the SM (e.g. supersymmetry) predict eEDMs at levels accessible to present experimental techniques

Experimental Limits on the eEDM

Data compiled by Amar Vutha

- Permanent EDMs violate CP
- Standard Model CP violation is highly suppressed for leptons → SM eEDM is unmeasurably small
- Extensions to the SM (e.g. supersymmetry) predict eEDMs at levels accessible to present experimental techniques
- Observation of a nonzero eEDM → new physics

Experimental Limits on the eEDM

ThO eEDM Apparatus

Molecular beam source

Pulsed YAG

ACME Update – Statistics

• 100 hours of data

- Blind offset added in analysis; plots show difference from blinded mean
 - No eEDM value can be derived from this data until the blind is removed
- Statistical error bar after 100 h:

$$\Delta d_e = 5 \times 10^{-29} e \cdot \mathrm{cm}$$

Plots from Nick Hutzler

 $\vec{\mathbf{E}}_{\mathrm{eff}}$ $\vec{\mathbf{B}}$

 \hat{z}

 \hat{x}

U

 \hat{y}

$$\begin{aligned} \phi(\vec{B}) &= (\vec{\mu} \cdot \vec{B} + \vec{d_e} \cdot \vec{\mathcal{E}}_{\text{eff}}) \tau / \hbar \\ + \phi(-\vec{B}) &= (-\vec{\mu} \cdot \vec{B} + \vec{d_e} \cdot \vec{\mathcal{E}}_{\text{eff}}) \tau / \hbar \end{aligned}$$

Τ

$$\begin{split} \phi(\vec{B}) &= (\vec{\mu} \cdot \vec{B} + \vec{d_e} \cdot \vec{\mathcal{E}}_{\text{eff}}) \tau / \hbar \\ &+ \phi(-\vec{B}) = (-\vec{\mu} \cdot \vec{B} + \vec{d_e} \cdot \vec{\mathcal{E}}_{\text{eff}}) \tau / \hbar \\ \phi_{\text{EDM}} &= 2(\vec{d_e} \cdot \vec{\mathcal{E}}_{\text{eff}}) \tau / \hbar \end{split}$$

 \hat{z} $ec{\mathbf{E}}_{\mathrm{eff}}$ $ec{\mathbf{B}}$ \wedge U \hat{x}

 $ec{\mathbf{E}}_{ ext{eff}}$

$$\begin{aligned} \phi(\vec{B}) &= (\vec{\mu} \cdot \vec{B} + \vec{d_e} \cdot \vec{\mathcal{E}}_{\text{eff}}) \tau / \hbar \\ + \phi(-\vec{B}) &= (-\vec{\mu} \cdot \vec{B} + \vec{d_e} \cdot \vec{\mathcal{E}}_{\text{eff}}) \tau / \hbar \end{aligned}$$

$$\phi_{\rm EDM} = 2(\vec{d_e} \cdot \vec{\mathcal{E}}_{\rm eff}) \tau / \hbar$$

The eEDM phase can be isolated from most other phases in the experiment using the eEDM's particular symmetry under the parameter switches:

- N- orientation of the ThO molecule
- E applied electric field
- B applied magnetic field

$\mathcal{N}ec{E}ec{B}$	Terms Contributing to Phase	Physical Quantities
+++	$ec{\mu}\cdotec{B}_{\mathrm{nr}} au/\hbar,\ heta$	Electron spin precession in background (non-reversing) magnetic field, Pump/probe relative polarization offset
+ + -	$ec{\mu}\cdotec{B} au/\hbar$	Electron spin precession in applied magnetic field
+ - +	$ec{\mu}\cdotec{B}_{ m leak} au/\hbar$	Leakage currents B_{leak}
-++	$\Delta ec{\mu} \cdot B_{ m nr} au / \hbar,$	Imperfect field reversals interacting with opposite
	$\Delta ec{\mu} \cdot B_{ m leak,nr} au / \hbar$	molecule polarizations
+		—
- + -	$\Deltaec{\mu}\cdotec{B} au/\hbar$	Electron spin precession due to molecule polarization
		dependent magnetic moment
+	$ec{d_e} \cdot \mathcal{E}_{ ext{eff}} au/\hbar,$	Electron EDM , Molecule polarization dependent $\vec{\mu}$
	$\Deltaec{\mu}\cdotec{B}_{ m leak} au/\hbar$	precession in leakage magnetic field
	$\Delta ec{\mu} \cdot ec{B} rac{E_{ ext{nr}}}{ E } au / \hbar$	Molecule polarization difference in $\vec{\mu}$ correlated
		with imperfect E reversal

$$\phi(\vec{B}) = (\vec{\mu} \cdot \vec{B} + \vec{d_e} \cdot \vec{\mathcal{E}}_{\text{eff}})\tau/\hbar + \phi(-\vec{B}) = (-\vec{\mu} \cdot \vec{B} + \vec{d_e} \cdot \vec{\mathcal{E}}_{\text{eff}})\tau/\hbar$$

$$\phi_{\rm EDM} = 2(\vec{d_e} \cdot \vec{\mathcal{E}}_{\rm eff}) \tau / \hbar$$

The eEDM phase can be isolated from most other phases in the experiment using the eEDM's particular symmetry under the parameter switches:

- N- orientation of the ThO molecule
- E applied electric field
- B applied magnetic field

$\mathcal{N}ec{E}ec{B}$	Terms Contributing to Phase	Physical Quantities
	$\begin{array}{c} \vec{\mu} \cdot \vec{B}_{\rm nr} \tau / \hbar, \\ 0 \\ \vec{\mu} \cdot \vec{B} \tau / \hbar \\ \vec{\mu} \cdot \vec{B}_{\rm leak} \tau / \hbar \\ \Delta \vec{\mu} \cdot B_{\rm nr} \tau / \hbar, \\ \Delta \vec{\mu} \cdot B_{\rm leak, nr} \tau / \hbar \end{array}$	Electron spin precession in background (non-reversing) magnetic field, Pump/probe relative polarization offset Electron spin precession in applied magnetic field Leakage currents B _{leak} Imperfect field reversals interacting with opposite molecule polarizations
+ +	$egin{array}{lll} & \Delta ec{\mu} \cdot ec{B} au/\hbar \ & ec{d}_e \cdot \mathcal{E}_{ ext{eff}} au/\hbar, \ & \Delta ec{\mu} \cdot ec{B}_{ ext{leak}} au/\hbar \ & \Delta ec{\mu} \cdot ec{B}_{ ext{leak}} au/\hbar \ & \Delta ec{\mu} \cdot ec{B}_{ ext{leak}}^{ ext{Enr}} au/\hbar \end{array}$	Electron spin precession due to molecule polarization dependent magnetic moment Electron EDM, Molecule polarization dependent $\vec{\mu}$ precession in leakage magnetic field Molecule polarization difference in $\vec{\mu}$ correlated with imperfect E reversal

• Suppose systematic depends linearly on experimental imperfection X (e.g., $X = E_{nr}$):

$$\phi_{\text{syst.}} \propto \Delta_{\text{syst.}} d_e = \alpha X$$

• Suppose systematic depends linearly on experimental imperfection X (e.g., $X = E_{nr}$):

$$\phi_{\text{syst.}} \propto \Delta_{\text{syst.}} d_e = \alpha X$$

• We can set limits on the magnitude of the imperfection X through direct measurement:

$$X < X_{\lim}$$

• Suppose systematic depends linearly on experimental imperfection X (e.g., $X = E_{nr}$):

$$\phi_{\text{syst.}} \propto \Delta_{\text{syst.}} d_e = \alpha X$$

• We can set limits on the magnitude of the imperfection X through direct measurement:

$X < X_{\lim}$

- To determine the systematic phase shift, we need to know α

• Suppose systematic depends linearly on experimental imperfection X (e.g., $X = E_{nr}$):

$$\phi_{\text{syst.}} \propto \Delta_{\text{syst.}} d_e = \alpha X$$

• We can set limits on the magnitude of the imperfection X through direct measurement:

$X < X_{\lim}$

- To determine the systematic phase shift, we need to know α
- Generate a large $X >> X_{\text{lim}}$ and measure the resulting eEDM:

• Suppose systematic depends linearly on experimental imperfection X (e.g., $X = E_{nr}$):

$$\phi_{\text{syst.}} \propto \Delta_{\text{syst.}} d_e = \alpha X$$

• We can set limits on the magnitude of the imperfection X through direct measurement:

$X < X_{\lim}$

- To determine the systematic phase shift, we need to know lpha
- Generate a large $X >> X_{\text{lim}}$ and measure the resulting eEDM:
- Now we can set a limit on $\Delta_{\text{syst.}} d_e$:

 $\Delta_{\rm syst.} d_e < \alpha X_{\rm lim}$

Determining Systematic Error Bars – Example

So far, every studied systematic error term contributes an uncertainty of: $\Delta_{\text{syst.}} d_e \lesssim 10^{-29} e \cdot \text{cm}$

Summary and Conclusion

• The ACME collaboration is performing an eEDM measurement with a to-date statistical uncertainty of:

$$\Delta d_e = 5 \times 10^{-29} e \cdot \mathrm{cm}$$

a factor of 20 below the current upper limit on d_e

- By switching experimental parameters *N*, *E*, and *B*, we can cancel out all contributions to the phase that have a different symmetry from the eEDM
- We put limits on the remaining systematic effects by amplifying and measuring them directly.
- Once we are finished studying our systematic effects, we can unblind the data and report a result!

ACME Collaboration

Visit us in LISE G14!

Affiliation: Harvard / Yale

Not pictured:

PI's

- John Doyle
- Gerald Gabrielse
- David DeMille

Alumni

- Wesley Campbell
- Yulia Gurevich
- Emil Kirilov
- Amar Vutha

Graduate students (left to right)

- Brendon O'Leary
- Ben Spaun
- Paul Hess
- Cris Panda
- Jacob Baron
- Nick Hutzler
- Elizabeth Petrik
- Postdoc (far right) • Adam West