
• After precession, the final state is projected to a 
pair of orthogonal basis vectors using a 703 nm 
probe laser (on the H-I transition) with linear 
polarization rapidly switched (200 kHz) between x 
and y. 

• We collect the 512 nm fluorescence as the 
molecules decay back to the ground state.

• ACME III planned improvement: upgrade PMTs to 
silicon photomultipliers (SiPMs) and optimize 
collection optics

• SiPM characterization tests have been performed

1. Buffer Gas Beam Source
• Produce ThO molecules through pulsed ablation 

of a ceramic ThO2 target at 50 Hz
• Neon buffer gas thermalizes the molecules. 

Molecule beam is cooled to 4 K
• ~1011 molecules/sr in the electro-vibrational 

ground state.
• Rotational cooling transfers more population to 

the 𝐽 = 0 level.

Motivation & Theory
• Permanent EDMs violate T-symmetry.
• Many theories beyond the Standard Model predict T  

violation and EDMs at current experimental 
precision.
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Key EDM results since 2010. Two-loop sensitivity from Nakai & Reece (2017).

One-loop sensitivity from Feng (2013). LHC scale gives stop mass sensitivity.

Beyond the ACME II Limit on the 

Electron EDM
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Noise Reduction

• ACME II had 1.7 times more noise than expected at the shot noise limit
• This noise was determined to come from both timing error in the data acquisition 

system and a timing offset between polarization bins
• ACME III demonstrated improvement: We were able to suppress this noise by 

controlling both parameters
• ACME III planned improvement: Reduce noise from velocity fluctuations by applying 

smaller magnetic fields
• New magnetic shield designs will need to reduce ambient fields to 1 µG and gradients 

to < 1 µG/cm

 

 

      

      

5. State Readout

ACME III Apparatus
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3. State Preparation
• STIRAP coherently transfers population to 

experimental H-state with ~75% efficiency (ACME II)
• ACME III planned improvement: perform STIRAP 

horizontally through  the X-A-H states (1892 nm, 943 
nm), which will allow better suppression of 
systematics caused by birefringence gradients

• 703 nm cleanup laser reprojects the state onto a 
coherent superposition of 𝑀 = +1,𝑀 = −1 states

STIRAP Level Structure Cleanup Level Structure

 

 

      

      

• ACME III planned improvement: Improve collimation of 
molecular beam by applying a hexapole electric field

• Requires compact rotational cooling to maximize input flux
• Molecules are transferred efficiently from the ground state (X) 

to the lensing state Q and back using X-C-Q STIRAP
• Demonstrated double STIRAP efficiency >75%
• Expected increase of molecular flux by a factor of 15 vs. ACME II
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2. Molecular Lens

SUSY particle bounds from this result.
Fig. from Matt Reece (unpublished)
ACME III projection (~10−30𝑒 ⋅ 𝑐𝑚) dashed.

4. State Precession
• The molecules in the prepared state 

acquire phase as they fly through the 
electric and magnetic fields of the 
interaction region.

• ACME III planned improvement: Recent 
measurements determined that the 
lifetime of the H-state is 4-6 ms, allowing 
us to increase precession time by a factor 
of 4-6 compared to ACME II (improved 
lifetime measurements are underway)

• Increased precession time decreases solid 
angle that reaches the detection region 
(see table below)

• Molecular lens will help to counteract this 
loss

• Requires new interaction region design to 
accommodate increased length

Systematic Search & Characterization

Improvement Signal Gain
EDM Sensitivity 

Gain

Increased precession time 0.20 2.3

Electrostatic lens 20.5 4.5

SiPM detector upgrade 2.3 1.5

Timing jitter noise reduction* 1 1.7

Total 9.4 26.4

ACME II daily statistical sensitivity ~1 × 10−29𝑒 ⋅ 𝑐𝑚

Projected ACME III daily sensitivity ~4 × 10−31𝑒 ⋅ 𝑐𝑚

Overall projected sensitivity

• In ACME II, we varied 40 different experiment parameters in the search for 
systematic errors (e.g. electric & magnetic fields, laser powers, detunings, 
pointing, polarization, molecular beam clipping, experiment timing, and analysis 
parameters)

• Where possible, we intentionally exaggerate the parameter and assume 
𝜔 depends linearly on the parameter 𝑃. The systematic error under optimal 
conditions (𝑃 = ത𝑃) is given as

𝜔𝑃
෩𝑁 ෨𝐸 = Τ𝜕𝜔 ෩𝑁 ෨𝐸 𝜕𝑃 ത𝑃

• The final contribution to the systematic uncertainty is computed from the linear 

error propagation of the two variables ത𝑃 and Τ𝜕𝜔 ෩𝑁 ෨𝐸 𝜕𝑃.
• ACME III planned improvement: further suppress systematics related to 𝐸𝑛𝑟

using improved electric field plates and horizontal STIRAP

• ThO: effective electric field 𝐸𝑒𝑓𝑓 ~ 80 GV/cm

• ACME II parameters:
• Precession time 𝜏 ~ 1 ms
• Measurement contrast 𝐶 ~ 0.95
• Detected molecule flux ሶ𝑛 ~ 1 × 107 𝑠−1

• Result: 𝑑𝑒 = −4.3 ± 4.0 × 10−30 e ⋅ cm
• 𝑑𝑒 < 1.1 × 10−29 e ⋅ cm

*Already implemented

Requirement Measured Value

Photon Detection 
Efficiency

~ 50% 2.5 x PMT

Dark Count Rate < 10 Mcps < 10 Mcps
@ -10 °C

Cross Talk and After Pulse < 25% ~ 15%


