## Molecule Distribution in the Detection Region

Lets assume that we start with all molecules exiting the beam source at $\ell=0$ and $t=0$ with random longitudinal velocity $v$ which is guassianly distributed with mean $\bar{v}$, and standard deviation $\sigma$. This probability distribution is given by:

$$
P_{v}(v)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(v-\bar{v})^{2}}{2 \sigma^{2}}\right)
$$

Now, we would like to know the probability distribution for the arrival time $T=L / v$ of the molecules in the detection region which is a distance $L$ away from the beam source.

This is given by:

$$
\begin{aligned}
P_{T}(T) & =P_{v}\left(v=\frac{L}{T}\right)\left|\frac{\partial v}{\partial T}\right| \\
& =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \frac{L}{T^{2}} \exp \left(-\frac{\left(\frac{L}{T}-\bar{v}\right)^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

where $\partial v / \partial T$ is the Jacobian determinant of the coordinate transformation that we did from velocity space to arrival time space.

This probability distribution is normalized and is asymetric in $T$. This problem becomes harder when we include the probability distribution $P(t, v) d t d v$ for random time $t$ exiting the cell and random longitudinal velocity $v$. In this case, the arrival time is $T=t+L / v$, and the final velocity is the same as the initial velocity, $V=v$. So in this case, the probability distribution for velocity and arrival time is given by:

$$
P_{1}(T, V)=P_{0}\left(t=T-\frac{L}{V}, v=V\right)\left|\operatorname{det} \frac{\partial(T, V)}{\partial(t, v)}\right|
$$

For this coordinate transformation, the jacobian determinant is $1,\left|\operatorname{det} \frac{\partial(T, V)}{\partial(t, v)}\right|=1$. Then, if we want just the probability distribution over arrival time, then we evaluate:

$$
P_{T}(T)=\int d V P_{1}(T, V)
$$

The first example implicitly had a delta function over cell exiting time:

$$
P_{0}(t, v)=\delta(t) \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(v-\bar{v})^{2}}{2 \sigma^{2}}\right)
$$

and so we obtain:

$$
\begin{aligned}
P_{T}(T) & =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \int d V \delta\left(T-\frac{L}{V}\right) \exp \left(-\frac{(v-\bar{v})^{2}}{2 \sigma^{2}}\right) \\
& =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \frac{L}{T^{2}} \exp \left(-\frac{\left(\frac{L}{T}-\bar{v}\right)^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

which is the same as that which we obtained using the other method. Now, we can generalize to include a gaussian distribution for cell departure times:

$$
P_{0}(t, v)=\frac{1}{\sqrt{(2 \pi)^{2} \sigma_{v}^{2} \sigma_{t}^{2}}} \exp \left(-\frac{(v-\bar{v})^{2}}{2 \sigma_{v}^{2}}-\frac{t^{2}}{2 \sigma_{t}^{2}}\right)
$$

The integral required to evaluate $P_{T}(T)$ is difficult to do analytically in this case, but it can be done numerically. The introduction of a nonzero $\sigma_{t}$ will lead to an increased variance in $P_{T}(T)$.


Figure 1: Left: Symmetric distribution $P_{v}(v)$. Right: Asymmetric distribution $P_{T}(T)$.

