
• After precession, the final state is projected to a 
pair of orthogonal basis vectors using a 703 nm 
probe laser (on the H-I transition) with linear 
polarization rapidly switched (200 kHz) between x 
and y. 

• We collect the 512 nm fluorescence as the 
molecules decay back to the ground state.

• ACME III planned improvement: upgrade PMTs to 
silicon photomultipliers (SiPMs) and optimize 
collection optics

• SiPM characterization tests have been performed
• For more information see poster N01.00095

1. Buffer Gas Beam Source
• Produce ThO molecules through pulsed ablation of a 

ceramic ThO2 target at 50 Hz
• Neon buffer gas thermalizes the molecules at 16K, beam 

expansion cools to 4K
• ~1011 molecules/sr in the vibronic ground state
• ACME III demonstrated improvement: a new compact 

rotational cooling scheme has been demonstrated, 
reaching up to a factor of 3.6 signal gain

Motivation & Theory
• Permanent EDMs violate T-symmetry.
• Many theories beyond the Standard Model predict T  

violation and EDMs at current experimental 
precision.
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Key EDM results since 2010. Two-loop sensitivity from Nakai & Reece (2017).

One-loop sensitivity from Feng (2013). LHC scale gives stop mass sensitivity.
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Noise Reduction

• ACME II had 1.7 times more noise than expected at the shot noise limit
• Excess noise came from both a timing error in the data acquisition system and a timing 

offset between polarization bins
• ACME III demonstrated improvement: We were able to suppress this noise by 

controlling both parameters
• ACME II also saw excess noise when running with large (~10 mG) applied magnetic 

fields, caused by fluctuations in the molecular beam velocity
• ACME III planned improvement: Reduce noise from velocity fluctuations by applying 

smaller magnetic fields
• New 3-layer magnetic shields will need to reduce ambient fields to 1 µG and gradients 

to < 1 µG/cm
• A self-shielded cosine theta coil will allow us to apply uniform fields in the interaction 

region, while keeping fringe fields at the shields below 5 µG
• For more information see poster F01.00004

 

 

      

      

5. State Readout
ACME III Apparatus
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3. State Preparation
• STIRAP coherently transfers population to 

experimental H-state with ~75% efficiency (ACME II)
• ACME III planned improvement: perform STIRAP

through  the X-A-H states (1892 nm, 943 nm), which 
will allow better suppression of systematics through 
improved STIRAP saturation

• 703 nm cleanup laser reprojects the state onto a 
coherent superposition of 𝑀 = +1,𝑀 = −1 states

STIRAP Level Structure Cleanup Level Structure

 

 

      

      

• ACME III planned improvement: 
improve molecular beam flux by focusing 
with a hexapole electrostatic lens

• The highly polarizable Q state of ThO
allows the electric lens to enhance the 
EDM signal by about 20 times when 
turned on, based on trajectory 
simulation

• First signal at Lens exit shows a factor of 
2.5 signal gain, consistent with 
prediction from trajectory simulations

• Demonstrated efficient STIRAP transfer 
into and out of the Q state, with about 
80% total efficiency

• For more information see: K03.00002

2. Molecular Lens

SUSY particle bounds from this result.
Fig. from Matt Reece (unpublished)
ACME III projection (~10−30𝑒 ⋅ 𝑐𝑚) dashed.

4. State Precession

• The molecules in the prepared state 
acquire phase as they fly through the 
electric and magnetic fields of the 
interaction region.

• Recent measurements determined that 
the lifetime of the H-state is 4.6 ms

• For more information see talk K03.00001
• ACME III planned improvement: Develop 

new apparatus to increase precession 
time by a factor of 5 compared to ACME II 

• Electrostatic lens helps compensate for 
solid angle losses

Improvement Signal Gain
EDM Sensitivity 

Gain

Increased precession time 5

Electrostatic lens 9.6 3.1

SiPM detector upgrade 2.3 1.5

Improved Collection Optics 1.5 1.2

Increased decay time 0.45 0.67

Timing jitter noise reduction 1 1.7

Total 14.9 31.8

ACME II daily statistical sensitivity ~1 × 10−29𝑒 ⋅ 𝑐𝑚

Projected ACME III daily sensitivity ~3 × 10−31𝑒 ⋅ 𝑐𝑚

Overall projected sensitivity

• ThO: effective electric field 𝐸𝑒𝑓𝑓 ~ 80 GV/cm

• ACME II parameters:
• Precession time 𝜏 ~ 1 ms
• Measurement contrast 𝐶 ~ 0.95
• Detected molecule flux ሶ𝑛 ~ 1 × 107 𝑠−1

• Result: 𝑑𝑒 = −4.3 ± 4.0 × 10−30 e ⋅ cm
• 𝑑𝑒 < 1.1 × 10−29 e ⋅ cm

Requirement Measured Value

Photon Detection 
Efficiency

~ 50% 2.5 x PMT

Dark Count Rate < 10 Mcps < 10 Mcps
@ -10 °C

Cross Talk and After Pulse < 25% ~ 15%

Projected EDM 
sensitivity gain vs 
precession time 
without the 
electrostatic lens 
(Red), and when 
combined with the 
lens (Blue).

Systematic Error Suppression
• The largest source of systematic uncertainty in ACME II came from non-reversing 

electric fields
• Non-reversing electric fields couple to the EDM value through imperfect 

polarization of the cleanup and readout lasers
• ACME III planned improvement: Produce new transparent field plates with

improved optical properties to reduce polarization imperfections, that have flat, 
parallel, and smooth surfaces.

• Use SF57HTUltra glass to reduce the stress-optic coefficient by ~40x versus ACME II
• Field plates must also be increased in size to match the increased 1m precession 

length, requiring composite field plates
• For more information see poster N01.00100

Designs for the 3-layer mu metal magnetic shields (left), and the self shielding cosine theta and gradient coils (right).


