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Supplementary Materials

Apparatus

We create a pulsed molecular beam of ThO using the buffer gas
beam technique16–18. Each packet of molecules leaving the source
contains ∼ 1011 ThO molecules in the J = 1 rotational level of
the ground electronic (X) and vibrational state and are produced
at a repetition rate of 50 Hz. The packet is 2-3 ms wide and has
a center of mass speed of ∼ 200 m/s. The chamber background
pressure of < 10−6 Torr suggests a ThO-background gas collision
probability of � 1% during the spin precession measurement which
could cause a small decrease in fluorescence signal or contrast.

After leaving the cryogenic beam source chamber, the ground
state molecules are in a thermal distribution of rotational states at
about 4 K with a rotational constant of about BR ≈ 10 GHz. We
use a series of lasers and microwaves to enhance the population
of the single rotational state, |X; J = 1�. The molecules travel
through optical pumping lasers resonant with the |X; J = 2, 3� →
|C; J = 1, 2� transitions, followed by a microwave field resonant
with the |X; J = 0� ↔ |X; J = 1� transition. The optical pumping
lasers transfer population from |X; J = 2, 3� into the |X; J = 0, 1�
states respectively. The microwaves then mix the populations of
|X; J = 0,M = 0� and |X; J = 1,M = 0� resulting in an overall
population increase in |X; J = 1� of a factor of ∼ 2.

The molecules then pass through adjustable and fixed collimat-
ing apertures before entering the magnetically shielded interaction
region, where electric and magnetic fields are applied. The quan-
tization axis is not preserved between the microwave region and
the electric field plates so the population in the three M sub-
levels of |X; J = 1� are mixed. A retroreflected 943 nm laser op-
tically pumps population from the |X; J = 1,M = ±1� states to
|A; J = 0,M = 0�, which spontaneously decays partially into the
|H; J = 1� state in which the EDM measurement is performed.

The spin precession region contains applied electric and mag-
netic fields, along with lasers to prepare and read our EDM state.
The electric field is provided by two plates of 12.7 mm thick glass
coated with a layer of indium tin oxide (ITO) on one side, and
an anti-reflection coating on the other. The ITO coated sides of
the plates face each other with a gap of 25 mm, and a voltage is
applied to the ITO to create a uniform electric field.

The spatial profile of the electric field was measured by per-
forming microwave spectroscopy on the ThO molecules. When
the molecule pulse is between the state preparation and read-out
regions, a 40 µs burst of microwaves resonant with the DC Stark-
shifted |H; J = 1,M = ±1� → |H; J = 2,M = 0� transitions is in-
troduced by a microwave horn at the end of the apparatus, coun-
terpropagating to the molecular beam. If on resonance, the mi-
crowaves drive a transition that spin-polarizes the molecules, sim-
ilar to the state preparation scheme. We can then detect the spin
polarization using the normal readout scheme. The microwave
transition width is ∼ 5 kHz (dominated by Doppler broadening),
so theH-state dipole moment ofD ≈ 1 MHz/(V/cm)11 (for J = 1)
means that this method is sensitive to mV/cm electric field de-
viations with spatial resolution of 1 cm, limited by the velocity
distribution in the beam. Our measurement indicated that the
spatial variation of the electric field plate separation is ∼ 20 µm
across the molecule precession region, in very good agreement with
an interferometric measurement32. We can also test how well the
electric field reverses by mapping the field with equal and opposite
voltages on the plates. This measurement indicated that the non-
reversing component of the electric field had magnitude |Enr| ≈
1-5 mV/cm across the entire molecular precession region, as shown
in Figure 3B.

The EDM measurement is performed in a vacuum chamber sur-
rounded by five layers of mu-metal shielding. The applied mag-
netic field is supplied by a cosine-theta coil, with several shim
coils to create a more uniform magnetic field within the preces-
sion region, and to allow us to apply transverse magnetic fields
and gradients for systematic checks. Changes in the magnetic
field are monitored by four 3-axis fluxgate magnetometers inside
the magnetic shields, and the magnetic fields were mapped out
before and after the experimental dataset was taken by sliding a
3-axis fluxgate down the beamline.

The lasers travel through the electric field plates, so all stages
of the spin precession measurement are performed inside the uni-
form electric field. All laser light in the experiment originates from
external cavity diode lasers (ECDL), frequency stabilized via an
Invar transfer cavity to a CW Nd:YAG laser locked to a molecular
iodine transition33. All required transition frequencies and state
assignments were determined previously34–36. We measured the
saturation intensities, radiative lifetimes, electric/magnetic dipole
moments, and branching ratios for all required states and transi-
tions.

In order to normalize against drifting molecular beam properties
(pulse shape, total molecule number, velocity mean and distribu-
tion, etc.), we perform a spin precession measurement every 10 µs,
which is much faster than the molecular beam variations15, spin
precession time, and temporal width of the molecular pulse. The
∼ 20 µs fly-through interaction time with the readout laser al-
lows each molecule to be read-out by both X̂ and Ŷ polarizations.
This is accomplished by sending the detection laser through two
different beam paths, combined on the two ports of a polarizing
beamsplitter. The two beam paths can be rapidly switched on
and off with acousto-optic modulators (AOMs). The maximum
rate of the polarization switching is limited by the 500 ns lifetime
of the C state (decay rate of γ ≈ 2π · 0.3 MHz). A 1.2 µs delay
is inserted between the pulses of X̂ and Ŷ polarized readout light
(Fig. S1A), which minimizes the amount of residual fluorescence
overlapping between subsequent polarization states. Since the po-
larization switching period is longer than the decay time of the C

state, we expect � 1 percent of the C state population to sponta-
neously decay back to the H state while the molecules are in the
readout laser beam. Each of these two effects reduces the contrast
by about 1 percent. We searched for, but did not observe, changes
in ω

NE as a function of time within a polarization cycle.
The transparent electric field plates allow us to collect a large

fraction of the solid angle of fluorescence from the molecules. Fluo-
rescence travels through the field plates into an eight-lens system
(four behind each plate) which focuses the light into an optical
fiber bundle. The four bundles on each side are coupled into a
fused quartz light pipe, which carries the fluorescence to a PMT
(outside the magnetic shields). The net detection efficiency, in-
cluding collection solid angle and detector quantum efficiency, is
about 1%. We typically register around 1000 photon counts per
molecule pulse (Fig. S1B). The PMT photocurrents are read as
analog signals by a low-noise, high-bandwidth amplifier, and then
sent to a 24-bit digitizer operating at 5 megasamples/s. The con-
trol and timing for all experimental parameters is managed by a
single computer, and the timing jitter is less than one digitizer
sampling period.

Systematic Errors

The presence of a nonzero magnetic field component Bz (par-
allel or antiparallel to the electric field), leads to a nonzero two
photon detuning, δ = 2µBgB̃ |Bz|, for the Λ system characterized
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Ŷ

1

(A) polarization 
sw

itching cycle
(B) m

olecule 
pulse

x25 averages

40 s

30 min

FIG. S1. Relevant switching timescales (A) Time within the
readout laser polarization switching cycle with a period of 10 µs. The
molecule fluorescence rises rapidly when the laser is switched on, decays
with rate γ/2 to a steady state (due to additional molecules entering the
laser beam), and then decays with rate γ after the laser is switched off.
Fluorescence is measured in detected photoelectrons/ms (kHz). (B)
Time within the ThO molecule pulse after its creation by laser ablation.
The fluorescence signals from (A) have been split up according to read-
out laser polarization to obtain the plotted points labeled by SX and
SY . The displayed fluorescence traces are averaged over 400 pulses, but
25 pulses are averaged for a given state of the experiment. (C) Switches
performed within a block of data. The Ñ switch randomly alternates
between a (−+) and (+−) pattern, the Ẽ and θ̃ switches randomly alter-
nate between a (−++−) and (+−−+) pattern, and the B̃ switch alter-
nates between a (−+) and (+−) pattern between blocks. (D) Switches
performed within a superblock of data. The P̃ state is assigned ran-
domly between blocks, but other superblock patterns are deterministic.
(E) Changes in the experimental procedure between superblocks. We
alternated between taking data under “normal” conditions and taking
data with “intentional parameter variations” (IPV), which were used to
monitor systematic effects. The IPVs are a=Enr, b=ΩNE

r , and c=∆prep

(which was used to monitor the value of Enr by exaggerating its effect
on the Ñ Ẽ correlated contrast). (F) An overview of the ∼ 2 weeks of
data comprising our reported EDM measurement.

Category I Parameters

Magnetic Fields
- Non-Reversing B-Field: Bnr

z

- Transverse B-Fields: Bx,By (even and odd under B̃)
- Magnetic B-Field Gradients:
∂Bx
∂x ,

∂By
∂x ,

∂By
∂y ,

∂By
∂z ,

∂Bz
∂x ,

∂Bz
∂z (even and odd under B̃)

- Ẽ correlated B-field: BE (to simulate
�v × �E/geometric phase/leakage current effects)
Electric Fields
- Non-Reversing E-Field: Enr

- E-Field Ground Offset
Laser Detunings
- Detuning of the Prep/Read Lasers: ∆prep, ∆read

- P̃ correlated Detuning: ∆P

- Ñ correlated Detunings: ∆N , ∆∆N

Laser Pointings along x̂

- Change in Pointing of Prep/Read Lasers
- Readout laser X̂/Ŷ dependent pointing
- Ñ correlated laser pointing
- Ñ and X̂/Ŷ dependent laser pointing
Laser Powers
- Power of Prep/Read Lasers: Pprep, Pread

- Ñ Ẽ correlated power, PNE (simulating ΩNE
r )

- Ñ correlated power, PN

- X̂/Ŷ dependent Readout laser power
Laser Polarization
- Preparation Laser Ellipticity
Molecular Beam Clipping
- Molecule Beam Clipping along the ŷ and ẑ

(changes �vy�,�vz�,�y�,�z� for molecule ensemble)

Category II Parameters

Experiment Timing
- X̂/Ŷ Polarization Switching Rate
- Number of Molecule Pulse Averages
contributing to an Experiment State
Analysis
- Signal size cuts, Asymmetry magnitude
cuts, Contrast cuts
- Difference between two PMT detectors
(checking spatial fluorescence region dependence)
- Variation with time within molecule pulse
(serves to check vx dependence)
- Variation with time within polarization
switching cycle
- Variation with time throughout the
full dataset (autocorrelation)
- Search for correlations with all φ, C, and S

switch-parity components
- Search for correlations with auxiliary measurements
of B-fields, laser powers, and vacuum pressure
- 3 individuals performed independent
analyses of the data

TABLE S1. Parameters varied in the search for systematic
errors. Category I: Parameters that were varied far from their values
under normal conditions of the experiment. For each of these param-
eters direct measurements or limits were placed on possible systematic
errors that could couple linearly to each by the method described in the
main text. Category II: Parameters for which all values are considered
consistent with normal conditions of the experiment. Although direct
limits on systematic errors cannot be derived, these served as checks for
the presence of unanticipated systematic errors.

by |H, Ñ ,M = +1�↔|C, P̃,M = 0�↔|H, Ñ ,M = −1�. Such a Λ
system has a dark eigenstate (a state that has zero excited state
|C, P̃,M = 0� amplitude) in the limit of δ = 0, but for δ �= 0, all
eigenstates have nonzero excited state amplitude. In the limit of
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small δ/Ωr � 1 (in our case, δ/Ωr ∼ 10−3), the introduction of the
magnetic field mixes the bright and dark states with amplitudes
proportional to δ/Ωr. The bright state amplitude acquires an AC
Stark shift and results in a change in the measured phase that is
correlated with the magnetic field direction,

φ
B
AC (∆,Ωr) = α

B∆2 + β
BΩr, (S1)

where α
B and β

B are proportional to |Bz| and depend on the
spatial profile of the laser. This model was verified and these
coefficients were measured directly from φ

B by varying ∆ and Ωr

with AOMs.
The coupling of the ∆NE and ΩNE

r to this B̃-odd AC Stark
shift-induced phase leads to contributions to φ

NEB:

φ
NEB = 2αB∆∆NE + β

BΩNE
r . (S2)

This phase is dominated by the β
BΩNE

r term since we operate the
experiment on resonance, ∆ ≈ 0; this was verified by observing
that φNEB reversed sign with k̂ ·ẑ (since ΩNE

r ∝ k̂ ·ẑ). We used this
effect to our advantage to measure the value of ΩNE

r = φ
NEB

/β
B

in our system. We measured φ
NEB from our EDM dataset, and

we measured β
B = ∂φ

NEB
/∂ΩNE by intentionally correlating the

laser power of the state preparation and read-out lasers with Ñ Ẽ
using AOMs.

The Enr and ΩNE
r systematics, which result from AC Stark shift

induced phases, were sensitive to the spatial intensity profile and
polarization gradients in the prep and readout lasers. A sharper
edge to the laser intensity profile reduces the size of the region
where the AC stark shift phase accumulates, therefore reducing
the systematic slopes proportional to α and β. The dependence
on the spatial intensity profile was confirmed by clipping our Gaus-
sian laser beam profile with a razor edge. This data agreed with
numerical simulations of the Schrödinger equation under varying
spatial intensity profiles. To vary the polarization gradients, an
optical chopping wheel was added on the state preparation laser
beam, reducing the time averaged energy deposited in the field

plates and hence also the thermally induced birefringence. As ex-
pected, the slope of the Enr systematic was also reduced by half.

The two Ñ states in which we perform our EDM measurement
have magnetic moments differing by about 0.1 percent12. This
difference is proportional to |Ez| and is the main contribution to
φ
NB. Therefore, any effect coupling to the magnetic moment to

systematically shift φE will also produce a 1000-times smaller shift
in φ

NE . We verified this by intentionally correlating a 1.4 mG
component of Bz with Ẽ , resulting in a large offset of φE and a
1000-times smaller offset of φNE , as expected. Although φ

E shifts
caused by leakage current, �v× �E , and geometric phase effects were
observed in past experiments4, we expect to be immune to such
effects at our current level of sensitivity10. Indeed, the measured
φ
E was consistent with zero for our reported data set. The mean

and uncertainty of φE , divided by the measured suppression factor,
is included in our φNE systematic error budget (see Table 1).

Data was stored and analyzed as a function of time after abla-
tion and time within a polarization switch state. Due to the 10
percent longitudinal velocity dispersion of our molecule beam, the
arrival time at our detectors is correlated with different longitu-
dinal velocity classes, and therefore different precession times τ .
We did not see any variation in the measured phases φ

E or φ
NE

as a function of time after ablation.

Outlook

It is possible to further reduce this experiment’s statistical and
systematic uncertainty. In a separate apparatus we have demon-
strated that electrostatic molecule focusing and EDM state prepa-
ration via Stimulated Raman Adiabatic Passage can combine to
increase our fluorescence signal by a factor of ∼ 100. Also, a
thermochemical beam source may increase our molecule flux by a
factor of ∼ 10. The combined signal increase may reduce our sta-
tistical uncertainty by a factor of � 10. The dominant AC Stark
shift systematic errors can be further suppressed by implementing
electric field plates with improved thermal and optical properties.
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