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Abstract

We report a combined experimental and theoretical study of collision-induced dipolar relaxation

in a cold spin-polarized gas of atomic nitrogen (N). We use buffer gas cooling to create trapped

samples of 14N and 15N atoms with densities (5 ± 2) × 1012 cm−3 and measure their magnetic

relaxation rates at milli-Kelvin temperatures. Rigorous quantum scattering calculations based

on accurate ab initio interaction potentials for the 7Σ+
u electronic state of N2 demonstrate that

dipolar relaxation in N + N collisions occurs at a slow rate of ∼10−13 cm3/s over a wide range of

temperatures (1 mK to 1 K) and magnetic fields (10 mT to 2 T). The calculated dipolar relaxation

rates are insensitive to small variations of the interaction potential and to the magnitude of the

spin-exchange interaction, enabling the accurate calibration of the measured N atom density. We

find consistency between the calculated and experimentally determined rates. Our results suggest

that N atoms are promising candidates for future experiments on sympathetic cooling of molecules.

∗tshcherb@cfa.harvard.edu
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I. INTRODUCTION

Owing to their unique controllability, cold and ultracold molecular gases hold promise

for many research applications, ranging from quantum information processing [1, 2] and

simulation of condensed-matter systems [1] to novel constituents of exotic quantum phases [3]

and reagents for external field-controlled chemical reactions [4]. At present, cold molecular

ensembles can be produced by a number of experimental techniques [1, 5–10], which can

be broadly classified as direct and indirect. The direct techniques are based on removing

thermal energy from a pre-existing ensemble of molecules via collisional thermalization or

time-dependent electromagnetic fields. Among the techniques of this kind are cryogenic

buffer-gas cooling [5], velocity filtering [10], and Stark and Zeeman deceleration [7–9]. The

indirect cooling methods are based on creating molecules in ultracold atomic gases via

photoassociation [11, 12] and sweeping a dc magnetic field across a Feshbach resonance [13].

While direct cooling methods produce molecules with initial temperatures between 50

and 200 mK suitable for cold collision experiments [5, 8, 9], further cooling is required

to reach the ultracold regime of interest to applications in condensed-matter physics and

quantum information processing [1]. This may be accomplished via sympathetic cooling,

a technique based on collisional equilibration of thermal energy, which takes place when a

gas of molecules is brought into thermal contact with a cold reservoir of atoms. Because

sympathetic cooling is driven by elastic collisions, it is a truly general technique, which has

found numerous applications in cold atom physics [14–16]. Most of the sympathetic cooling

experiments performed so far used alkali-metal atoms (typically 87Rb [14, 15]) because of

their easy availability via laser cooling and their attractive collisional properties, which allow

for sustainable evaporative cooling down to quantum degeneracy.

The majority of experiments with cold molecules use permanent magnetic or electrostatic

traps to capture molecules in their low-field-seeking Stark or Zeeman states, which are

intrinsically unstable and may decay by collisions with background gas atoms. While elastic

collisions lead to cooling, inelastic collisions heat the gas, cause trap loss, and shorten the

lifetime of trapped molecules. The number of elastic collisions per inelastic collision must

be large enough (>100) to allow for rapid thermalization while keeping inelastic losses to a

minimum. An ideal atomic collision partner (X) for sympathetic cooling of molecules must

therefore meet the following acceptability criteria
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1. Be available in copious quantities at low and ultralow temperatures. In particular,

atoms with magnetic moments of 1µB or more (where µB is the Bohr magneton) can

be loaded in permanent magnetic traps via buffer-gas cooling [6], evaporatively cooled

to very low temperatures [17], and co-trapped with molecular species [18].

2. Have low inelastic X-X collision rates, so that sufficient density of X can be maintained

in the trap at all temperatures to allow for efficient molecule thermalization;

3. Have low inelastic collision rates with the diatomic molecules of interest, so that elas-

tic atom-molecule collisions which drive thermalization occur more frequently than

inelastic collisions.

Recent theoretical work has addressed the optimal choice of atomic collision partners

for sympathetic cooling of molecular species [19–21]. The alkali-metal atoms, which satisfy

the requirements (1) and (2), have so far received most attention and ab initio calculations

of interaction energies and low-temperature collision properties have been reported for the

alkali-metal atoms Rb and Cs interacting with OH [19], NH [20], and ND3 [21]. These studies

have shown that the interactions between the alkali-metal atoms and diatomic molecules

are strongly anisotropic, giving rise to large inelastic collision rates at low temperatures.

Although external electromagnetic fields might be used to mitigate collisional relaxation

[22], efficient sympathetic cooling of open-shell molecules with alkali-metal atoms in static

electromagnetic traps is generally considered unfeasible [1]. We note that certain trapping

techniques employing ac electric [23], optical dipole [26] or microwave [24] fields, allow for

trapping ground-state molecules, thereby eliminating the possibility of collisional relaxation.

These trapping techniques are, however, still in their infancy, so modern direct cooling

experiments make exclusive use of permanent magnetic or electrostatic traps.

Recently, Wallis and Hutson theoretically explored the possibility of using the alkaline-

earth atoms to sympathetically cool paramagnetic molecules [25]. Their ab initio calculations

on Mg + NH collisions in the presence of an external magnetic field demonstrated that in-

elastic collisions are suppressed at low magnetic field strengths, indicating that sympathetic

cooling of NH molecules by collisions with laser-cooled Mg atoms might be possible [25].

However, the detrimental inelastic collisions become very efficient at large magnetic fields,

which requires precooling of molecular gas to very low temperatures (1 mK) before the sym-

pathetic cooling can begin. In addition, the alkaline-earth atoms in their electronic ground
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states are not paramagnetic, which makes it challenging to produce large numbers of Mg

atoms required for collisional thermalization (criterion 1). The same limitation applies to

recent proposals for using laser-cooled rare gas atoms to sympathetically cool large molecules

like benzene [26].

We have recently suggested that molecular species bearing magnetic moments can be

sympathetically cooled by collisions with spin-polarized nitrogen (N) atoms in a permanent

magnetic trap [18, 27]. Due to their large magnetic moments of 3µB, the N atoms can be

efficiently confined in a magnetic trap using buffer-gas cooling [6]. Previous experimental

work [18] has demonstrated that samples of N atoms with densities ∼1010 - 1011 cm−3 can be

routinely produced and held in a magnetic trap for as long as 10 s, allowing for co-trapping

of molecular species such as NH [18]. However, the cross sections for inelastic relaxation in

N + N collisions were not measured in these preliminary experiments, leaving the question

open of whether N + N collisional thermalization would prevail over two-body inelastic

losses (criterion 2). While it is well-known that the two-body losses in doubly spin-polarized

atomic gases are induced by the magnetic dipole interaction [28], the time scale for these

processes in N + N collisions is unknown. In addition, the density of trapped N atoms could

not be accurately determined due to the difficulties encountered in N atom detection.

Here we present a combined experimental and theoretical study of low-temperature col-

lisions in a cold spin-polarized gas of atomic nitrogen. We use buffer-gas cooling to trap

large numbers of 14N and 15N atoms and study their collision-induced dipolar relaxation at

milli-Kelvin temperatures. To interpret the experimental observations, we perform accu-

rate ab initio calculations of the interaction potential between two spin-polarized N atoms

and rigorous quantum scattering calculations of trap loss dynamics. By analyzing various

sources of uncertainty in our theoretical results, we infer the upper and lower bounds to the

calculated relaxation rates, which allows us to calibrate the N atom density based on the

experimental measurements of trap lifetimes.

The paper is organized as follows. In Sec. II, we describe our experimental apparatus

and present measurements of collision-induced trap loss rates for both 14N and 15N isotopes

of atomic nitrogen. Sections IIIA and IIIB present ab initio calculations of the interaction

potentials for N2 and give a brief outline of quantum scattering calculations on N + N colli-

sions. Sections IIC and IIIC compare our theoretical results with experimental data. Section

IV gives a brief summary of our results and outlines possible future research directions.
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II. EXPERIMENT

A. Apparatus

The experimental apparatus is similar to those described in Refs. [18, 29]. A diagram

of the trapping region is shown in Fig. 1. The trapping region is centered about a pair

of super-conducting magnetic solenoids that produce a spherical-quadrupole magnetic trap

with depth of 3.8 T. For atomic nitrogen, with a magnetic moment of 3µB, the corresponding

trap depth is about 7.6 K. The magnetic field contours are shown in gray in Fig. 1. In the bore

of the super-conducting solenoids resides a cylindrical copper buffer gas cell, maintained at a

temperature of about 600 mK by thermal anchoring to a 3He refrigerator. The buffer gas cell

has an aperture at both ends of the trapping region. At one end, a 1 cm diameter aperture

allows the atomic nitrogen to enter the trapping region from a room temperature atomic

beam. At the opposite end, a 3.80 cm diameter aperture allows the buffer gas to be rapidly

introduced into and subsequently removed from the trapping region. The atomic nitrogen

beam is generated using a DC glow discharge source with N2 as the process gas, operating at

a stagnation pressure of 100 torr . The atomic source is turned on for approximately 40 ms

to load atoms into the trapping cell. Simultaneous with the introduction of atoms into the

trapping region, 3He buffer gas is introduced into the cell by pulsing open the cryogenic

buffer gas reservoir [29]. The density of the buffer gas during loading of the atoms is on the

order of 1015 cm−3. The loading pulse of buffer gas then exits the buffer gas cell via the

3.80 cm aperture on a time scale of 50 ms. Following loading of N into the magnetic trap,

the final background buffer gas density in the trapping region is approximately 1012 cm−3.

The density is set by the rate of helium desorbing from the buffer gas cell walls [30]. While

this density still corresponds to a N + He elastic collision rate of about 100 Hz, the trap loss

from these collisions is on the order of 100 s since the temperature of the He buffer gas is

more than a factor of 10 lower than the depth of the magnetic trap. This long trap lifetime

makes it possible to study nitrogen collisions that lead to trap loss on time scales of 10 s.

B. Atomic nitrogen detection

To detect the trapped atomic nitrogen we use two-photon absorption laser induced fluo-

rescence (TALIF) [31]. We excite atomic nitrogen in the ground (2p3)4S3/2 state by absorbing
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two photons at 206.7 nm to the excited (3p)4S3/2 state at 96750 cm−1. The excited (3p)4S3/2

state has a lifetime of 26 ns [32] and decays to the (3s)4P states, emitting light near 745 nm.

A 1 m focal length lens placed outside the vacuum chamber is used to focus the excitation

laser onto the trapped sample. The fluorescence is collected using a lens mounted at the

midplane of the magnet and sent to a photomultiplier tube for detection.

Estimation of the trapped atomic nitrogen density from the TALIF signal is difficult.

Both the fluorescence collection efficiency and nitrogen excitation probability are required

to convert the TALIF signal to an absolute nitrogen density. From geometric considerations

and fluorescence measurements using trapped NH, we estimate our fluorescence collection

efficiency to be 10−4 [27]. This value for fluorescence collection effieciency we estimate to

be accurate to within a factor of 3. To calculate the nitrogen excitation probability, one

needs precise knowledge of the spatial, temporal, and spectral properties of the excitation

laser. In the low intensity limit, where depletion of the ground state and photo-ionization

are negligible, one can show the total number of fluorescence photons produced from the

sample is [33]:

Nphoton = σ̂(2) E2

(hν)2

∫

ngr(r)S2(r)dV

∫ ∞

−∞

F 2(t)dt (1)

where Nphoton is the total number of fluorescence photons produced per pulse, σ̂(2) is the

effective two-photon cross section , ngr(r) is the nitrogen ground state density distribution,

E is the laser pulse energy, hν is the excitation laser photon energy, and S(r) and F (t)

are the normalized spatial and temporal profiles of the laser beam (
∫

S(r)dA = 1, and
∫

F (t)dt = 1). Here we have assumed the spatial and temporal variations are independent.

We can express the value of the spatial integral in terms of an effective 1/e2 beam waist w0,

where
∫

S(r)2dA = π−1w−2
0 . Similarly, the temporal integral can be expressed in terms of an

effective pulse duration, τex, where
∫

F (t)2dt =
√

2 ln(2)π−1(τex)
−1. The resonant effective

two-photon cross section can be expressed as [34]:

σ̂(2) = σ(2)g(δ = 0)G(2)(t = 0) (2)

where g(δ = 0) is the resonant line shape factor, G(2)(t = 0) is the second-order intensity-

correlation function of the excitation laser, δ is the detuning from the atomic resonance,

δ = 2ωlaser − ω0, and the line shape factor is normalized such that
∫

g(δ)dδ = 1.

The spatial profile of the laser at the position of the atoms is measured using a CCD

camera. The value of
∫

S(r)2dA is measured to be π−1(120µm)−2. The term
∫

ngr(r)S2(r)dV
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in Eq. (1) can be evaluated in the following manner. For the trap geometry in our experiment,

the trapped nitrogen density does not vary significantly over the spatial profile of the laser.

In the direction of propagation of the laser, the nitrogen atoms are confined to a effective

length, leff = 2 mm. The term can then be evaluated
∫

ngr(r)S2(r)dV = n0leff
∫

S(r)2dA,

where n0 is the nitrogen density at the center of the trap.

To monitor the temporal profile of the laser we pick off a portion of the laser beam and

direct it onto a ceramic beam dump. We then use a fast photodiode to monitor the light scat-

tered from the beam dump. The value of
∫

F (t)2dt is measured to be
√

2 ln(2)π−1(9.5ns)−1.

The photodiode is also used to monitor the laser pulse energy, E, by calibrating its signal

using a pyroelectric energy meter.

The spectral profile of the pulsed laser is more difficult to characterize. The commercial

Sirah pulsed dye laser uses a Littman-Metcalf configuration for the resonator cavity [35]

to produce laser light at 620 nm. The resonator cavity has a linewidth of about 1.5 GHz

and longitudinal mode spacing of about 600 MHz. For each laser pulse, several different

longitudinal modes may lase. This is observed in our setup using a Fizeau interferometer

[36, 37] as a spectrum analyzer. The 620 nm light is subsequently frequency doubled in

a KDP crystal, and the doubled light mixed with the fundamental in a BBO crystal to

produce light at 207 nm. The shot to shot spectral variation of 1.5 GHz at 620 nm leads

to a variation of 9 GHz (0.3 cm−1) at the resonant atomic frequency. For comparison, the

expected Doppler broadening (full-width half-max) of the atomic transition is expected to

be 300 MHz at 600 mK with Zeeman broadening of less than 100 MHz [38, 39]. As a result,

the value of g(0) will be determined by the spectral properties of the laser. An upper limit

on g(0) can be determined by directly measuring the observed nitrogen signal linewidth.

Figure 2 shows a trapped nitrogen spectrum taken at a cell temperature of 600 mK. To

acquire these spectra, we monitor the wavelength of the excitation laser using a wavemeter

with resolution 0.01 cm−1 at 620 nm, corresponding to a resolution of 0.06 cm−1 at the atomic

transition frequency. Each data point represents the average signal of three consecutive laser

excitation pulses. These consecutive laser pulses have a corresponding frequency jitter on the

order of 0.3 cm−1 at the atomic transition frequency. The measured linewidth of 0.76 cm−1

(23 GHz) is a result of a combination of the actual spectral linewidth of the laser and the

limited resolution of our measurement technique. For calculations in this paper, we take

g(0) = (2/π)(2π × 10 GHz)−1. This value of g(0) should be good to a factor of 2.
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Finally, due to the complicated spectral mode structure of the light at 620 nm, it is

not clear what the value of G(2)(t = 0) is for the light produced at 207 nm. In Ref. [34],

Bamford and coworkers analyze values of G(2)(t = 0) for various pulsed laser systems. They

find G(2)(0) ranges between 1.5 and 3.0 for typical multimode pulsed laser systems, though

our setup is not directly measured in the reference. Taking a value of G(2)(0) = 2 will be

within 30% of the actual value.

The parameters to calibrate the TALIF signal are summarized in Table I. Due to the large

uncertainties in the spectral properties of the excitation light and the fluorescence collection

efficiency, the nitrogen densities calculated using the values listed in Table I should be

accurate only to within an order of magnitude. Also omitted from this analysis is the role

of laser polarization and atom orientation, which would likely introduce corrections of order

unity to the calculation.

C. Experimental results

Here we present our observations of trapping of atomic nitrogen and discuss the nature

of the observed trap loss. In particular, we are interested in the ratio of the elastic N + N

collision rate to the inelastic N + N collision rate, γ. Measurements of both the elastic and

inelastic collision rates are desirable, though to measure each independently, one needs to

have an absolute calibration of the atomic density. Since our estimates of atomic N density

from the TALIF signal are only good to about an order of magnitude, we lack the information

we need to make precise measurements of the elastic and inelastic N + N collision rates.

However, it is possible to directly measure γ without precise knowledge of our atomic

nitrogen density by investigation of the dynamics of the magnetic trap loss. Qualitatively,

for very deep traps, evaporation of the sample is suppressed, and loss is driven by inelastic

N + N collisions. For lower trap depths, evaporative loss due to elastic N + N collisions

can dominate trap loss. By measuring trap loss due to N + N collisions over a range of

trap depths, it is possible to directly extract γ. A discussion of our magnetic trap dynamics

follows.

The expression for loss of atomic N in our magnetic trap has the form

ṅ0 = − 1

7.6

〈

Kloss

〉

n2
0 −

1

τHe
n0 (3)
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where n0 is the peak trap density,
〈

Kloss

〉

is the trap average 2-body loss rate coefficient,

1/7.6 is a factor for our trap geometry, and τHe is the 1/e lifetime associated with loss due

to atom-helium collisions.
〈

Kloss

〉

includes trap loss both from atom evaporation,
〈

Kevap

〉

,

and loss from atom-atom inelastic collisions,
〈

Kin

〉

. The evaporative portion of trap loss

can be expressed as
〈

Kevap

〉

= f(η)
〈

Kel

〉

, were f(η) is the fraction of elastic collisions that

lead to atom loss at trap depth η = Ttrap/Tatom, where Ttrap is the trap depth expressed in

units of temperature, and Tatom is the temperature of the trapped atomic sample. For our

trap geometry, Monte-Carlo simulations of trap dynamics yield f(η) = 1.9(η − 3) exp(−η),

which agrees well with analytic expressions for f(η) [40]. The relationship between
〈

Kin

〉

and the dipolar relaxation rates derived from the quantum scattering calculations in Sec.

III is given in Appendix A. Combining these expresions, we have:

〈

Kloss

〉

= f(η)
〈

Kel

〉

+
〈

Kin

〉

(4)

=
〈

Kel

〉

(f(η) + 1/γ) (5)

Equation (5) provides an expression for extracting γ without precise knowledge of the ab-

solute atomic nitrogen density.

Figure 3 shows a typical nitrogen trap decay. For each data point in Fig. 3 we load N

atoms into the trap at t = 0 and detect the remaining N atoms after waiting a period of time

between 2 s and 100 s. Attempts to continually detect trapped N atoms during a single trap

loading result in rapid N trap loss, most likely due to optical pumping. The shot to shot

variation in N signal is likely due to the variation of the spectral properties of the excitation

laser. We fit our nitrogen time decay data to the solution of Eq. (3) to arrive at values for
〈

Kloss

〉

.

Values for
〈

Kloss

〉

are measured for values of η between 10 and 14, which correspond to

Tatom betwen 550 mK and 650 mK with magnetic trap depths between 3.3 T and 3.9 T. A

plot of
〈

Kloss

〉

versus η is shown in Fig. 4. The solid line in Fig. 4 is the fit to Eq. (5), which

yields a value of γexp = (6.5 ± 5.5) × 103. Figure 5 shows the results of quantum scattering

calculations described in the following sections, which give γtheory = (1.0 ± 0.3) × 103 at

T = 600 mK. The dashed line in Fig. 4 shows a fit of Eq. (5) with the value of γ fixed to

γtheory = 1000. The values of γexp and γtheory are consistent, and the value of γ > 1000 is

favorable for evaporative cooling of atomic N in a magnetic trap.

From the data in Fig. 4, one can calibrate the trapped atomic nitrogen density by fitting
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the observed loss rates to the calculated loss rates. In particular, for η > 12,
〈

Kin

〉

accounts

for 60% or 90% of the total
〈

Kloss

〉

for values of γ = 6500 or 1000, respectively. Although

there may be large uncertainty in the actual value of γ, for large η, the uncertainty in the

systematic correction of
〈

Kin

〉

to arrive at a total
〈

Kloss

〉

is only about 30%. From this

calibration method we estimate we typically trap atomic nitrogen at initial peak densities of

more than (5 ± 2)× 1011 cm−3, corresponding to more than (3± 1)× 1011 trapped nitrogen

atoms. The error in these nitrogen density measurements is dominated by the systematic

uncertainties associated with the model of trap loss dynamics and the quantum scattering

calculations of
〈

Kloss

〉

, but also includes the statistical uncertainties associated with the

experimental measurement of
〈

Kloss

〉

. The atomic nitrogen density calculated using this

method agrees with our nitrogen density estimates from the TALIF signal to within a factor

of 5, consistent with our expected uncertainty in the TALIF signal of an order of magnitude.

This technique for measurement of the trap nitrogen density is valuable due to technical

difficulties associated with a direct spectroscopic measurements of trapped atomic N.

We note that we also observe trapping of the bosonic isotope 15N by using isotopically

enriched (> 98%+) 15N2 as the process gas. No differences in trap loss were observed

between 15N and 14N at a trap temperature of 600 mK.

III. THEORY

A. Ab initio calculations of interaction potentials

To evaluate the potential energy curve (PEC) for the 7Σ+
u electronic state of N2, we use

two different ab initio approaches. The first approach is based on the coupled cluster method

including perturbative triple excitations (CCSD(T)) and extrapolation to the complete basis

set (CBS) limit. The second approach uses the coupled cluster method with full iterative

triple excitations (CCSDT) and a fixed basis set with additional bond functions. The inter-

action energies in both methods are calculated within the supermolecular approach, where

dimer and monomer energies are calculated with dimer centered basis sets. We applied Boys

and Bernardi counterpoise procedure to correct for the basis set superposition error.

In the first approach, the PEC was calculated using a single-reference restricted Hartree-

Fock (RHF) wave function as a starting point, followed by a spin-unrestricted coupled cluster
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treatment [44] with single, double and non-iterative triple excitations (UCCSD(T)) as im-

plemented in the MOLPRO suite of programs [45]. The use of the single-reference approach

is justified because the high-spin electronic state 7Σ+
u can be well described by a single deter-

minant. For the purpose of extrapolation to the CBS limit, we used a series of augmented,

correlation-consistent triple-, quadruple-, quintuple- and sextuple-zeta basis sets of Dunning

et al. [42, 43] denoted as AVTZ, AVQZ, AV5Z and AV6Z, respectively. The 1s orbitals of N

were frozen in these calculations. The interaction energy was calculated at 50 internuclear

separations from R = 2.5 a0 to R = 50 a0.

For each R point we performed extrapolation to the CBS limit using AVTZ, AVQZ,

AV5Z and AV6Z interaction energies. To fit the series of interaction energies we used the

empirical formula EX = ECBS +Ae−(X−1) +Be−(X−1)2 suggested by Peterson and coworkers

[46, 47], where X = 3, 4, 5, 6 is the number of “zetas” in the basis set. The resulting

UCCSD(T)/CBS PEC (labeled as potential A) is shown in Fig. 6. The potential A has a

minimum at Re = 7.21 a0 with a well depth of De = 29.3 cm−1.

The 7Σ+
u state has a large multiplicity, leading one to expect a significant contribution

of higher excitations in the CCSD(T) method. In order to estimate this contribution, we

included the full iterative triple excitations in our ab initio calculations of the interaction

energy for the 7Σ+
u state. The inclusion of full connected triple excitations makes the ab initio

calculations much more computationally demanding, and we employed a single correlation-

consistent AVTZ basis set with an additional set of 3s3p2d2f1g bond functions (BF) placed

at the middle of the N2 bond to reduce computational costs. To perform the full MRCCSDT

calculations, we used the MRCC program [48] by Kállay et al. [49] interfaced with the

MOLPRO code [45]. The MRCCSDT calculation used a single-determinant RHF wave

function as a reference. The resulting MRCCSDT/AVTZ+BF PEC (labeled as ”Potential

B”) is shown in Fig. 6. The minimum of the potential B has a well depth of De = 31.6 cm−1

and is located at Re = 7.18 a0. These values may be compared with the previous ab initio

results Re = 7.5 a0 and De = 21 cm−1 obtained by Partridge et al. [50]. We note that with

the same AVTZ+BF basis the calculated well depth at the UCCSD(T) level is similar to

that of potential A. The inclusion of the full triple excitations thus increases the well depth

by approximately 7%. Potentials A and B have very similar long-range behavior.

Table II shows the bound levels of 14N2(
7Σ+

u ) and 15N2(
7Σ+

u ) calculated using potentials A

and B in the absence of a magnetic field. Both potentials are deep enough to support three
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bound levels with v = 0, 1, and 2. The number of rotational levels decreases from 10 (or 11

for potential B) for v = 0 to two for v = 2. We note the presence of accidental degeneracies

between the rotational levels corresponding to different v: The levels v = 0, ℓ = 11 and

v = 1, ℓ = 6 calculated with potential A have very similar binding energies of −0.221 cm−1.

B. Scattering calculations

The Hamiltonian for two S-state atoms such as N(4S3/2) colliding in the presence of a

uniform magnetic field of strength B may be written (~ = 1)

Ĥ = − 1

2µR2

∂2

∂R2
R +

ℓ̂2

2µR2
+ V̂ sd(R) + V̂ dip(R) + ĤA + ĤB, (6)

where ν = A ,B enumerates the atoms, µ is the reduced mass of the N2 molecule, ℓ̂ is the

orbital angular momentum for the collision, and R = |R| is the interatomic separation. The

Hamiltonian of the isolated atom ν is given by

Ĥν = γν Îν · Ŝν + 2µ0BŜνz −
µIν

Iν
Îνz , (7)

where Ŝν and Îν are the electron and nuclear spins, µ0 is the Bohr magneton, γν is the

hyperfine constant, and µIν is the nuclear magnetic moment. In this work, we consider

both naturally occurring nitrogen isotopes, fermionic 14N (Iν = 1/2, γ/2π = 10.451 MHz)

and bosonic 15N (Iν = 1, γ/2π = 14.646 MHz) [51]. The operators Ŝνz and Îνz yield the

projections of Ŝν and Îν on the space-fixed quantization axis defined by the external magnetic

field. The magnetic dipole-dipole interaction is [52]

V̂ dip = −
(

24π

5

)1/2
α2

R3

2
∑

q=−2

(−)qY2−q(R̂)[ŜA ⊗ ŜB](2)q , (8)

where α is the fine-structure constant, [ŜA ⊗ ŜB] is a second-rank tensor product of atomic

spin operators, and Ykq(R̂) are the spherical harmonics. The vector R̂ = R/R describes the

orientation of the N2 collision pair in the space-fixed coordinate frame.

The spin-dependent interaction potential between the atoms may be written as [52]

V̂ sd(R) =

SA+SB
∑

S=|SA−SB|

S
∑

MS=−S

VS(R)|SMS〉〈SMS|, (9)
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where Ŝ = ŜA + ŜB is the total spin of the collision complex and MS = MSA
+ MSB

is the

projection of Ŝ on the space-fixed quantization axis. In this work, we use the accurate ab

initio interaction potentials for the 7Σ+
u electronic state of N2 (S = 3) calculated as described

in Sec. IIIA.

Equation (9) is parametrized by four spin-dependent interaction potentials of the N2

molecule correlating with the lowest dissociation limit N(4S3/2) + N(4S3/2). In addition to

the high-spin 7Σ+
u potential described above, the low-spin electronic states of 5Σ+

g , 3Σ+
u , and

1Σ+
g symmetries (S = 2, 1, and 0) should be taken into account. While the X1Σ+

g and A′5Σ+
g

electronic states were subject to several theoretical studies [53, 54], no high-quality ab initio

calculations are available for the A3Σ+
u electronic state. In the absence of more accurate

information, we choose to parametrize the spin-dependent interaction (9) by the Heisenberg

Hamiltonian [55–57]

V̂ sd(R) = V si(R) − 2J(R)ŜA · ŜB, (10)

where V si is a spin-independent interaction potential, and J(R) is the spin-exchange (SE)

coupling strength. It follows from Eq. (10) that the interaction potentials for the spin states

S and S − 1 differ exactly by twice the SE coupling strength

VS(R) − VS−1(R) = 2SJ(R). (11)

Equation (11) allows us to obtain the four PECs in Eq. (9) in terms of two parameters:

(i) the potential energy curve for the 7Σ+
u state calculated in Sec. IIIA and (ii) the SE

coupling strength J(R). For the latter, we use the expression derived by Smirnov and

Chibisov [55–57]

J(R) = CRαe−βR, (12)

where β =
√

8I and α = 7/β − 1 are expressed via the atomic ionization energy I (0.53412

Eh for the N atom): β = 2.0671 a−1
0 and α = 2.3864. In Sec. IIIC, we will use C as a free

parameter to vary the magnitude of the SE coupling in order to explore the sensitivity of

scattering cross sections to the interaction potential.

If the weak hyperfine interaction of 14N can be neglected (see Appendix B for a justifica-

tion), the wave function of the N2 collision complex can be expanded in direct products of

electronic spin functions and partial wave states

Ψ = R−1
∑

MSA
,MSB

∑

ℓ,mℓ

FMSA
MSB

ℓmℓ
(R)φη

MSA
MSB

ℓmℓ
(R̂) (13)
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where

φη
MSA

MSB
ℓmℓ

=
1

[2(1 + δMSA
MSB

)]1/2
[|SAMSA

〉|SBMSB
〉 + η(−)ℓ|SBMSB

〉|SAMSA
〉]|ℓmℓ〉, (14)

|SνMSν
〉 are the electronic spin basis functions of individual atoms A and B, MSν

are the pro-

jections of Sν on the space-fixed quantization axis, and |ℓmℓ〉 = Yℓmℓ
(R̂). The direct-product

basis (14) is properly ordered (τA ≥ τB) and symmetrized to account for the quantum statis-

tics of indistinguishable bosons (15N, η = 1, odd ℓ) or fermions (14N, η = −1, even ℓ).

The matrix elements of the spin-dependent interaction potential (9) in the symmetrized

basis are

〈φη
MSA

MSB
ℓmℓ

|V̂ sd|φη
M ′

SA
M ′

SB
ℓ′m′

ℓ

〉 =
δℓℓ′δmℓm

′

ℓ

[(1 + δMSA
MSB

)(1 + δM ′

SA
M ′

SB

)]1/2

× [〈SAMSA
|〈SBMSB

|V̂ sd|SAM
′
SA
〉|SBM

′
SB
〉+ η(−)ℓ〈SAMSA

|〈SBMSB
|V̂ sd|SBM

′
SB
〉|SAM

′
SA
〉].
(15)

The second term on the right-hand side (which arises from symmetrization) can be obtained

from the first term by interchanging the indices M ′
SA

↔ M ′
SB

. We therefore only need to

evaluate the unsymmetrized matrix element

V sd
MSA

MSB
ℓmℓ;M

′

SA
M ′

SB
ℓ′m′

ℓ

= δℓℓ′δmℓm
′

ℓ
〈SAMSA

|〈SBMSB
|V̂ sd|SAM

′
SA
〉|SBM

′
SB
〉. (16)

where the subscripts SA, SB and S ′
A, S ′

B have been omitted for clarity. Expanding the

product of two spin functions in a Clebsh-Gordan series [58, 59], we obtain

V sd
MSA

MSB
ℓmℓ;M

′

SA
M ′

SB
ℓ′m′

ℓ

= δℓℓ′δmℓm
′

ℓ

∑

S,MS

(2S + 1)(−)MS





SA SB S

MSA
MSB

−MS





×





SA SB S

M ′
SA

M ′
SB

−MS



VS(R), (17)

Because the spin-dependent interaction potential (9) is diagonal in the total spin Ŝ and

its space-fixed projection MS , the matrix elements between the fully spin-polarized initial

state |SA,MSA
= SA〉|SB,MSB

= SB〉 and all other spin states vanish identically. Thus, in

the absence of the magnetic dipole interaction (see below), spin-polarized atoms can only

undergo elastic scattering.
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The matrix elements of the magnetic dipole interaction can be derived as described else-

where [52, 61, 62]. Here, we only present the final result

V dip
MSA

MSB
ℓmℓ;M

′

SA
M ′

SB
ℓ′m′

ℓ

= −
√

30α2

R3

∑

q

(−)mℓ+SA+SB−MS [(2ℓ + 1)(2ℓ′ + 1)]1/2

× [(2SA + 1)SA(SA + 1)]1/2[(2SB + 1)SB(SB + 1)]1/2





ℓ 2 ℓ′

0 0 0









ℓ 2 ℓ′

−mℓ −q m′
ℓ





×
∑

qA,qB





1 1 2

qA qB −q









SA 1 SA

−MSA
qA M ′

SA









SB 1 SB

−MSB
qB M ′

SB



 , (18)

Unlike the interaction potential (9), the magnetic dipole interaction does not conserve MS

and couples the fully spin-stretched state |SA,MSA
= SA〉|SB,MSB

= SB〉 to other spin

states, thereby inducing spin-flipping transitions. This dipolar relaxation mechanism is

typical of light S-state atoms in fully spin-polarized Zeeman states [60]. The rate constants

for dipolar relaxation can be measured by observing collision-induced loss of atoms from a

magnetic trap as described in Sec. II.

A system of close-coupled (CC) equations for the radial functions FMSA
MSB

ℓmℓ
(R) results

when the expansion (13) is combined with the Schrödinger equation with Hamiltonian (6).

The CC equations are solved numerically on a radial grid extending from R = 4.0 a0 to

R = 50.0 a0 with a constant spacing of 0.04 a0 using the improved log-derivative algorithm.

The calculations are carried out separately for each total angular momentum projection

M = MSA
+ MSB

+ mℓ, which is conserved for collisions in external fields. The scattering

S-matrix is computed directly in the uncoupled basis (14) and used to evaluate the cross

sections for collision-induced transitions between different Zeeman states [63–65]

σMSA
MSB

→M ′

SA
M ′

SB

=
π(1 + δMSA

MSB
)

k2
MSA

MSB

∑

M

∑

ℓ,mℓ

∑

ℓ′,m′

ℓ

|δMSA
M ′

SA

δMSB
M ′

SB

δℓℓ′δmℓm
′

ℓ

− SM
MSA

MSB
ℓmℓ;M

′

SA
M ′

SB
ℓ′m′

ℓ

|2, (19)

where the factor (1 + δMSA
MSB

) accounts for the indistinguishability of colliding atoms. In

order to make sure that our numerical results are correct, we repeated scattering calculations

with a different code [66] and obtained the same results.

By averaging the symmetrized cross sections (19) over a Maxwell-Boltzmann distribu-

tion of collision energies, we obtain state-resolved dipolar relaxation rates as functions of
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temperature T

KMSA
MSB

→M ′

SA
M ′

SB

(T ) =

(

8β

πµ

)1/2 ∫

βECσMSA
MSB

→M ′

SA
M ′

SB

(EC)e−EC/kBTdEC , (20)

where β = 1/kBT and kB is Boltzmann’s constant.

C. Theoretical results

1. Cross sections and rate constants for dipolar relaxation

Figure 7 shows the energy levels of 14N as functions of the applied magnetic field. At zero

field, the ground state is split by the hyperfine interaction into three levels with F = 5/2,

3/2, and 1/2. The inset of Fig. 7 shows the hyperfine splittings as functions of the applied

magnetic field. As shown in Appendix A, the hyperfine splittings have a minor effect on

N + N collisions except at very small magnetic fields (<20 G), so it is a good approximation

to consider bare spin states |SA,MSA
〉 with MSA

= −3/2, . . . 3/2. The magnetic trapping

experiments described in Sec. II select N atoms in the fully spin-polarized state |S = MS =

3/2〉, so in the following we will only consider collisions of N atoms initially in this state.

The calculated cross sections for elastic scattering and dipolar relaxation in 14N + 14N

and 15N + 15N collisions are displayed in Fig. 8 as functions of collision energy EC . In the

limit of vanishing collision energy, the variation of the cross sections with EC is determined

by the Wigner threshold law; the cross sections for elastic scattering vary as E2ℓ
C and those

for dipolar relaxation as E
ℓ−1/2
C . Collisions of identical fermions such as 14N are determined

by p-wave scattering, so both the elastic and inelastic cross sections vanish as EC tends to

zero. The situation for the bosonic isotope 15N is the opposite: the inelastic cross section

diverges and the elastic cross section approaches a constant. At collision energies above

∼0.01 cm−1, partial waves with ℓ > 1 begin to factor in, altering the dependence of the cross

sections of collision energy, and leading to the appearance of shape resonances. A particularly

pronounced resonance at EC ∼ 1.3 cm−1 corresponds to the quasibound 14N2(
7Σ+

u ) molecule

in the ℓ = 7 rotational state.

In Fig. 9, we plot the cross sections for dipolar relaxation as functions of collision energy

and magnetic field. Magnetic fields increase the splitting between the incoming and outgoing

collision channels and suppress dipolar relaxation [61]. The suppression is quite pronounced
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at high magnetic fields (on order of 1 T), but does not alter the dependence of the cross

sections on collision energy. In particular, increasing the magnetic field from 0.01 T to 1 T

reduces the lifetime of the ℓ = 7 shape resonance by more than two orders of magnitude,

but leaves its position intact. The same is true for the low-energy ℓ = 2 shape resonance in

15N. As shown in Fig. 9 for both 14N and 15N, the decrease of the cross sections with B is

not always monotonous.

As discussed in the Introduction, collisional stability is a key ingredient to efficient use

of trapped atomic gases for sympathetic cooling of molecular ensembles. Fig. 10(a) shows

the rate constants for dipolar relaxation calculated by thermally averaging the cross sections

shown in Fig. 8 at a fixed magnetic field of 0.1 T. The relaxation rates for both N isotopes

display broad maxima at T ∼ 10 mK (for 14N) and T ∼ 50 mK (for 15N). The rate for

14N features an additional maximum near 1 K due to the ℓ = 7 shape resonance shown in

Fig. 8. At temperatures below 5 mK, inelastic collisions occur in the Wigner s-wave regime,

and the rate constants for dipolar relaxation tend to zero for 14N and approach a constant

value of 5.5×10−13 cm3/s for 15N. The ratios of the rate constants for elastic scattering and

dipolar relaxation displayed in Fig. 10(b) remain high (γ > 100) down to ∼10 mK for 14N

and ∼2 mK for 15N. This result shows that trapped ensembles of 14N and 15N atoms with

densities 1012 cm−3 will have lifetimes ∼2 s over a wide range of temperatures from 1 mK

to 1 K. We note that because the elastic cross section for 14N becomes very small at T < 1

mK, 15N is a more promising candidate for cooling molecules to temperatures below 1 mK,

whereas both 14N and 15N isotopes appear suitable for sympathetic cooling to temperatures

above 1 mK.

Figure 11 shows the temperature dependence of state-to-state rate constants for dipolar

relaxation in 14N + 14N collisions (20). The single spin-flip transition |MSA
= 3/2〉|MSB

=

3/2〉 → |M ′
SA

= 1/2〉|M ′
SB

= 3/2〉 dominates over the whole range of magnetic fields at

both 0.1 K and 0.6 K, and the double spin-flip transition |MSA
= 3/2〉|MSB

= 3/2〉 →
|M ′

SA
= 1/2〉|M ′

SB
= 1/2〉 is the next most efficient. The rate constants for other transitions

(changing MS by 2 or more) are negligibly small.
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2. Sensitivity of trap loss rates to the interaction potential

In order to verify the reliability of our scattering calculations, it is essential to analyze

various sources of uncertainty that can affect the accuracy of numerical results for the

dipolar relaxation cross sections and trap loss rates. In addition to numerical convergence

(Sec. IIIB) and the neglect of the hyperfine interaction (Appendix B), we consider two

additional sources of uncertainty, of which the first arises from neglecting the SE interaction

[setting C = 0 in Eq. (12)] and the second from inaccuracies in the ab initio interaction

potential for the 7Σ+
u state of N2 calculated in Sec. IIIA.

To examine the sensitivity of the calculated dipolar relaxation rates to the SE interaction,

we calculated the rates (A3) as functions of the SE parameter C (12). To estimate the range

of variation of C, we used the ab initio results available for the 5Σ+
g electronic state. Figure 12

shows the PEC for the 5Σ+
g state of N2 calculated for selected values of C using Eqs. (11)

and (12). In the absence of the SE interaction, the 5Σ+
u potential is identical to the 7Σ+

u

potential. As C increases, the 5Σ+
u potential becomes deeper and shifts towards smaller

R. While the Heisenberg exchange Hamiltonian (9) cannot accurately describe the shape

of the ab initio PEC for the 5Σ+
g state [54], the long-range part of the curve is fairly well

reproduced at C = 0.3 Eh. Based on the comparison presented in Fig. 12, we choose to vary

C in the range from 0 to 0.5 Eh with a grid step of 0.05 Eh.

As shown in Fig. 13, the rate constants for dipolar relaxation (A3) do not vary strongly

with C, except at the lowest temperature studied (0.1 K). The dependence of the calculated

rates on C is not monotonous, and the largest deviation from C = 0 values used as a reference

in this work does not exceed 15 %. A similar lack of sensitivity has recently been observed in

quantum calculations of dipolar relaxation in collisions of spin-polarized Eu atoms [67]. We

emphasize, however, that the SE interaction in the Eu2 collision complex is several orders

of magnitude weaker than in N2, so the range of SE splittings probed in Ref. [67] was much

narrower than explored in this work. The results presented in Fig. 13 therefore suggest that

the rate constants for dipolar relaxation are insensitive to much larger variations of the SE

interaction (on the order of several eV).

To understand how the calculated inelastic rates are affected by the uncertainties in the

7Σ+
u interaction potential, we scaled the potential by a constant factor λ and calculated

the temperature dependence of Kin for 20 equally spaced values of λ in the interval 0.9 –
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1.1 (λ = 1 corresponds to unscaled potential B). The relatively small range of λ chosen

reflects the high level of accuracy of the ab initio interaction potential presented in Sec.

IIIA (<10%). Figure 14 shows the dependence of Kin(λ) for three selected temperatures.

At T = 0.6 K, the variation of Kin is within 15 % for the whole range of λ, demonstrating

that our results are robust against both lessening (λ < 1) and deepening (λ > 1) of the

interaction potential. The sensitivity of the calculated relaxation rates to λ increases at

low temperatures, reaching a maximum at T = 0.1 K. This is an expected result since the

variation of the cross section with λ should be most pronounced in the ultracold limit, where

the s-wave scattering cross section exhibits a resonance-like variation as a function of λ [68].

Figure 15 shows the temperature dependence of the calculated dipolar relaxation rates for

14N + 14N collisions. The error bars represent maximum possible deviations from the mean

value of Kin defined as the value calculated in the absence of the SE interaction (C = 0)

for unscaled potential B (λ = 1). We evaluate the error bars by finding the extrema of the

calculated functions Kin(λ) and Kin(C) for each T . The rate constants decrease and the error

bars shrink with increasing temperature. The results presented in Table III indicate that

while imperfections in the 7Σ+
u interaction potential are the dominant source of uncertainty

at temperatures below 0.6 K, omission of the SE interaction introduces the same amount of

error at T = 0.6 K and becomes the major source of uncertainty above this temperature.

From Figs. 13 and 14, we observe that scaling the interaction potential tends to increase the

inelastic rates, whereas varying the strength of the SE interaction does not always lead to

the monotonous variation. As a result, uncertainties in the interaction potential determine

the upper error bar at T ≤ 0.6 K, and those in the SE interaction determine the lower error

bar at all temperatures.

Figure 16 shows the variation of the elastic collision rates for 14N + 14N with λ. Strong

sensitivity to λ is apparent over the whole temperature range. As discussed in Sec. IIC,

the calculated ratio of the rate constants for elastic scattering and dipolar relaxation in

14N + 14N collisions is consistent with the measured value of γ shown in Fig. 5.

IV. SUMMARY

We have presented a combined experimental and theoretical study of collisional properties

of cold spin-polarized atomic nitrogen. We have trapped large numbers of 14N and 15N atoms
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for tens of seconds and measured their dipolar relaxation rates at 600 mK. Based on these

measurements and theoretical calculations of trap loss rates, we have determined the number

density of trapped N atoms to be (5 ± 2) × 1011 cm−3.

Our theoretical analysis of dipolar relaxation in N + N collisions is based on accurate ab

initio interaction potentials for the 7Σ+
u state of N2 computed using highly correlated coupled

cluster methods (Sec. IIIA). By solving the multichannel scattering problem, we obtained

the cross sections and rate constants for dipolar relaxation in N + N collisions over a wide

range of collision energies and magnetic fields (Sec. IIIB). The calculated relaxation rates

for both 14N and 15N isotopes are similar in the multiple partial wave regime (T > 5 mK),

but display a very different behavior at ultralow temperatures due to the effects of quantum

statistics (Figs. 9 and 10). The rate constants for dipolar relaxation in N + N collisions

are on the order of 10−13 cm3/s, indicating that spin-polarized N atoms are stable against

collisional relaxation in the temperature range between 1 mK and 1 K. The results presented

in Fig. 10 indicate that sympathetic cooling of paramagnetic molecules with N atoms will

be efficient provided the probabilities for inelastic relaxation in N-molecule collisions are not

very large. At T < 1 mK, the elastic cross section for 14N + 14N decreases dramatically

and the elastic-to-inelastic ratio for 15N + 15N drops below 100 (Fig. 10). Thus, neither

14N nor 15N appears suitable for sympathetic cooling of molecules below 1 mK. It might be

possible to further reduce the temperature of trapped molecules via evaporative cooling at

low magnetic fields [65] once N atoms are removed from the trap.

In agreement with a recent theoretical study of dipolar relaxation in Eu + Eu collisions

[67], we found that the calculated rate constants for trap loss in collisions of spin-polarized N

atoms are not sensitive to the magnitude of the SE interaction. We identified inaccuracies in

the interaction potential for the 7Σ+
u electronic state of N2 as the major source of uncertainty

in our theoretical results. These inaccuracies (on the order of 10%) lead to large variations

of the calculated relaxation rates at temperatures below 0.1 K (Fig. 14), but have a minor

effect at the experimental temperature of 0.6 K (Fig. 15 and Table III), enabling accurate

calibration of the trapped N atom density (Sec. II). The results shown in Fig. 15 demonstrate

that rigorous quantum scattering calculations based on ab initio interaction potentials are

capable of providing quantitative accuracy required for the interpretation of cold collision

experiments.

Our findings indicate that spin-polarized nitrogen atoms have favorable collisional prop-
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erties over a wide range of temperatures and magnetic fields, making them promising candi-

dates for future experiments on sympathetic cooling of open-shell molecules such as NH [18]

to temperatures ∼1 mK. The main advantage of using N atoms is their moderate magnetic

moment of 3µB, which is large enough to enable efficient magnetic trapping and evaporative

cooling [18, 27] and small enough to make collision-induced dipolar relaxation inefficient.

The latter property is particularly important since large inelastic loss rates recently ob-

served in collisions of easily trappable, highly magnetic atoms Cr, Tm, and Er [69, 70] make

these atoms unsuitable for sympathetic cooling of molecules in permanent magnetic traps.
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Appendix A: Rate equations

Here, we present the derivation of the rate equation (3). Assuming that the process of

trap loss is irreversible, the time decay of trapped N atom density n due to dipolar relaxation

in binary N + N collisions can be described by the following rate equation [11, 63]

−ṅ =
∑

M ′

SA
,M ′

SB

wM ′

SA
M ′

SB

K3
2
3
2
→M ′

SA
M ′

SB

(B, T )n2, (A1)

where K3
2
3
2
→M ′

SA
M ′

SB

(B, T ) are state-resolved rate constants for dipolar relaxation (20). The

weighting factors in Eq. (A1) serve to distinguish between single spin-flip collisions, in which

only one atom is lost (w 1

2

3

2

= 1) and double spin-flip collisions, in which both atoms are lost

(w 1

2

1

2

= 2). Taking into account only the dominant relaxation channels shown in Fig. 11,

we can rewrite the rate equation (A1) in the form

−ṅ = Kloss(B, T )n2, (A2)
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where

Kin(B, T ) = 1
2

[

2K3
2
3
2
→ 1

2
1
2
(B, T ) + K3

2
3
2
→ 1

2
3
2
(B, T )

]

(A3)

is the total rate constant for trap loss and the factor of 1/2 is introduced to account for indis-

tinguishability of collision partners [63]. The right-hand side of Eq. (A3) can be evaluated

in terms of the partial rate constants given by Eq. (20).

The rate constants defined by Eq. (A3) characterize the dynamics of dipolar relaxation

in the presence of a uniform magnetic field. The trapping field generated in our apparatus

(Fig. 1) is, however, highly inhomogeneous, so the calculated loss rates (A3) should be

averaged over the magnetic field distribution of the trap. To do this, we assume a trapped

sample density distribution of the form

n(r) = n0U(r, T ) (A4)

where U(r, T ) = exp[−µB(r)/kBT ] is the magnetic field distribution of the trap, n0 is

the density of N atoms at the trap center, B(r) is the trapping field, and T is the atom

temperature. The trapping field is calculated numerically from the known electromagnetic

coil profiles, and then fit to an 11 term polynomial [27].

Integration of Eq. (A2) over the trap volume using the density distribution of Eq. (A4)

yields an expression for total trap loss

−ṅ0 =

∫

Kin(B(r), T )U(r, T )2dV
∫

U(r, T )dV
n2
0 =

1

7.6
〈Kin(T )〉n2

0, (A5)

where

〈Kin(T )〉 ≡
∫

Kin(B(r), T )U(r, T )2dV
∫

U(r, T )2dV
(A6)

is the average rate constant for trap loss, and the value of 1/7.6 comes from the numeric

evaluation of the expression
∫
U(r,T )2dV∫
U(r,T )dV

≈ 1
7.6

for the experimental trap geometry (Fig. 1) [27].

Appendix B: Hyperfine interaction

In order to justify the approximation of neglecting the hyperfine structure we made in

Sec. IIIA, we performed test calculations of 14N + 14N collisions with the hyperfine structure

included. The results for EC = 0.6 K and C = 0.5Eh are shown in Fig. 17. The inelastic

cross sections for N atoms colliding in the uppermost Zeeman state l (Fig. 7) are identical
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to those calculated with the hyperfine structure omitted, as expected for the fully spin-

polarized Zeeman states. When the atoms collide in partially polarized Zeeman states j

or k at B < 10 mT, they can exchange spin angular momentum via the SE interaction

(9). The cross sections for collision-induced SE relaxation are typically much larger than

those for dipolar relaxation [11], so the inelastic cross sections increase by a factor of 50-100

as shown in Fig. 17. As B increases, the states j, k, and ℓ converge to the same limit

MS = 3/2, and the inelastic cross sections decrease monotonically, approaching the same

limiting value calculated without taking into account the hyperfine structure (Sec. IIIA).

At the temperature and trap depths for the experiments described in Sec. II, N atoms at

fields below 10 mT account for less than 10−4 of the total number of trapped atoms, and

therefore do not make a significant contribution to the total trap loss rate.
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Table I. Parameters and typical values for atomic nitrogen excitation.

description symbol typical value units

two-photon cross section [41] σ(2) 1.37 10−36 cm4

excitation pulse energy E ∼ 0.6 mJ

beam waist w0 120 µm

effective excitation length leff 2 mm

pulse duration (FWHM) τex 9.5 ns

resonant line-shape value g(0) (2/π)(2π × 10 GHz)−1 s

2nd-order photon correlation coefficient G(2)(0) 2

photon collection efficiency α ∼ 10−4
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Table II. Ro-vibrational levels of N2(
7Σ+

u ) supported by potentials A and B. The level

energies are given in cm−1 relative to the N(4S3/2) + N(4S3/2) dissociation limit in the

absence of a magnetic field. The magnetic dipole interaction is not included in the bound-

state calculations.

v, ℓ 14N2
15N2

Potential A Potential B Potential A Potential B

0, 0 -17.38 -19.10 -17.72 -19.47

0, 1 -17.08 -18.80 -17.45 -19.19

0, 2 -16.50 -18.21 -16.90 -18.63

0, 3 -15.62 -17.32 -16.08 -17.80

0, 4 -14.46 -16.14 -14.98 -16.69

0, 5 -13.01 -14.66 -13.62 -15.30

0, 6 -11.28 -12.91 -12.00 -13.66

0, 7 -9.28 -10.88 -10.12 -11.74

0, 8 -7.02 -8.57 -7.99 -9.58

0, 9 -4.51 -6.01 -5.62 -7.16

0, 10 -1.76 -3.20 -3.03 -4.51

0, 11 – -0.162 -0.221 -1.64

1, 0 -3.61 -4.30 -4.02 -4.75

1, 1 -3.41 -4.09 -3.83 -4.56

1, 2 -3.01 -3.68 -3.45 -4.16

1, 3 -2.43 -3.08 -2.87 -3.58

1, 4 -1.67 -2.29 -2.15 -2.82

1, 5 -0.75 -1.32 -1.25 -1.88

1, 6 – -0.205 -0.221 -0.79

2, 0 -0.066 -0.125 -0.129 -0.217

2, 1 -0.011 -0.055 -0.062 -0.137
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Table III. The calculated rate constants Kloss for 14N (in units of 10−13 cm3/s) vs temper-

ature (in K). The maximum relative uncertainties with respect to the mean value calculated

for potential B, C = 0 and λ = 1 are presented in the third column. The error bars are

based on two sets of calculations using (i) λ = 0.90, . . . , 1.10 with a grid spacing of 0.01 for

C = 0 and (ii) C = 0, . . . , 0.5 Eh with a grid spacing of 0.05 Eh for λ = 1. Also indicated

are the dominant sources of uncertainty in the calculated rates arising from inaccuracies in

the 7Σ+
u interaction potential (IP) and omission of the SE interaction (SE).

Temperature Kloss Uncertainty (%) Source

0.1 3.8+7
−0.6 184.2 IP

0.2 4.5+2.6
−0.5 57.8 IP

0.3 4.3+1.1
−0.5 25.6 IP

0.4 4.0+0.7
−0.5 17.5 IP

0.5 3.7+0.5
−0.4 13.5 IP

0.6 3.4+0.4
−0.4 11.8 IP and SE

0.7 3.2+0.2
−0.4 12.5 SE
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Fig. 9. (a) Cross sections for dipolar relaxation in 14N + 14N collisions as functions of collision

energy (in cm−1) and magnetic field (in T). Note the presence of the ℓ = 7 shape resonance marked

in Fig. 8 and its evolution with magnetic field. (b) Same but for 15N + 15N collisions. The cross

sections are evaluated for C = 0.
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elastic scattering and dipolar relaxation. The magnetic field is 0.1 T.
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Fig. 15. Rate constants for dipolar relaxation (A3) calculated for 14N + 14N as functions of

temperature. The error bars are calculated as explained in the text (see also Table III).
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trap as functions of temperature.
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