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SECTION I: WHY ARE EDMS
INTERESTING?




SECTION |I: WHY ARE EDMS INTERESTING?

MOTIVATION

» The Standard Model

cannot answer all S‘l’ahcjam’ Model
questions

» Matter-Antimatter
Asymmetry Problem

» Sakharov conditions allow
for baryon asymmetry




SECTION |I: WHY ARE EDMS INTERESTING?

EDMS AND CP VIOLATION

» Standard Model does not account
for the observed asymmetry

» Permanent EDMs inherently
violate Pand T

» Standard Model predicts electron
EDM < 107" e em

» Current limit: |d.| < 1.1 x 107%e cm

» Many BSM theories predict
nonzero eEDMs near our
sensitivity
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SECTION |I: WHY ARE EDMS INTERESTING?

PLACING LIMITS ON NEW PHYSICS
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SUSY particle bounds from the ACME |
result. Fig. from Matt Reece
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Key EDM results since 2010. Two-loop
sensitivity from Nakai & Reece (2017).
One-loop sensitivity from Feng (201 3).
LHC scale gives stop mass sensitivity.
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SECTION Il: HOW CAN WE MEASURE AN ELECTRON EDM?

AN EDM IN THO

» Molecules can provide
strong internal electric

fields

» ThO has Ecg~ 80 GV/ecm E B
A A

» We can flip this electric
field by probing different
states

3 us N = +1)

» Powerful method for
eliminating systematic

+deEefp gLmm====="""Y —ubB

errors

» ThO only requires a small
applied field



SECTION II: HOW CAN WE MEASURE AN ELECTRON EDM?

EXPERIMENTAL SENSITIVITY
» For a shot noise limited measurement we
| 7 = Coherence time
0w X INT N = Count rate

1" = Averaging time

—

» For our experiment we have Hgpy = —de - Eoj

1
8eff7' /—NT ff eCLlI'ic I11e

od



SECTION II: HOW CAN WE MEASURE AN ELECTRON EDM? 9

EXPERIMENT STRUCTURE
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SECTION II: HOW CAN WE MEASURE AN ELECTRON EDM? 10

STATE PREPARATION

» Stimulated Raman Adiabatic
Passage (STIRAP)

» Coherent population transfer
from Xto H

» ~75% transfer efficiency

» State Refinement

» Optically pump into dark state H1— —= —
with desired polarization

» Suppress residual STIRAP
phases :




SECTION II: HOW CAN WE MEASURE AN ELECTRON EDM?

STATE READOUT

» Project phase onto orthogonal
polarizations

» Rapidly switch polarization at
200 kHz

» AOMs allow rapid switching

» Detect fluorescence with 8
PMTs

vvvvvvvvvvvvvvvvvvvvvvvv

—
o O
o O
o O

Photoelectron
rate (MHz)
()]

o
(@]

0 X laser on Y laser on

.........




SECTION II: HOW CAN WE MEASURE AN ELECTRON EDM?

STATE READOUT

» Project phase onto orthogonal
polarizations

» Rapidly switch polarization at
200 kHz

» AOMs allow rapid switching

» Detect fluorescence with 8
PMTs
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14

ADVANCED ACME OVERVIEW

1. Buffer Gas
Beam Source

2. Molecular Lens 3. State Preparation 4. State Precession
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ELECTROSTATIC LENS FOR THO MOLECULES

» Without a lens, fewer than .04% of molecules reach the detector

» Electrostatic lens focuses molecules into the EDM region, giving
~20x gain in signal (including the efficiency of double-STIRAP)

» Efficient STIRAP into the Q state allows for strong focusing

gain facto
005 | Hexapole EDM region 0.55 |
0os " electrodes
I = — T 0.5
g — <
—_— — —— —_— g’
: ~— Molecular 8 o4
trajectories 5
0.06 I | | | | | | | 0.4
0 0.2 04 0.6 Igﬁsﬁion. N (r:ﬂ 1.2 1.4 1.6 1.8 .
See Poster K01.00142 : Upgrading the ACME 0.35 ?
° 02 0.3 04 05 06
electron EDM search with a molecular lens

distance between lens and field-plates [m]
See: X. Wu et al., The metastable Q 3 A 2 state of ThO: a new resource for the ACME electron EDM search, New J. Phys (2020).
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INCREASED H-STATE LIFETIME

1.0+

» Last lifetime measurement os
showed a lower bound of just
1.8 ms

Measured Ratio

04+

» ACME Il used only 1 ms (20 cm)
precession time

0.2+

00k, . ]

} Recent measu rements Suggest a Precession Time (ms)
lifetime of approximately 5 ms Prep 1 Prep2  Readout
943 nm 943 nm 703 nm
A A A

» Currently working on
measurement to reduce beam  m—
uncertainty of H-state lifetime

See the immediately following talk: H07.00002 : New H-state t
lifetime measurement for the ACME electron EDM search |
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CONTROLLING EXCESS NOISE FOR ADVANCED ACME

» ACME Il had 1.7 times more noise olay Tmingnoise __

{ d .ATX_)*,

than expected from the shot 50| (¥ time delay) .

. . . : ® -60ns |-

noise limit e e 3oms |

= 30f e ome |

. 205_ ® 10ns _

» Noise came from 2 effects: N > Gons |-

. . . 0: .....................

} La rge Scale tlmlng Jltter o0 o0 Time in pola:i.z(;tion bin (ps)1.5 20
Reduced Timing Noise

o o ReducedTmingNolss .

» Timing offset between Xand Y :Z(b) o il |

. . . - ® -80ns |

polarization bins wl ° -s0ns |

NS 30 ® -10ns |

! ® O0Ons |]

» We can now control both 20! I

! @ 60ns |

parameters to reduce this noise i

0.0 05_ 1.0 ) 1.5 20
Time in polarization bin (us)

See: C. Panda et al., Attaining the shot-noise-limit in the ACME measurement of the electron electric dipole moment, J. Phys. B (2019).
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DETECTION UPGRADES

» SiPMs provide a significant gain over the PMTs used in
ACME I

» Dark count rate has been controlled in prototype tests

Requirement Measured Comment

Photor) c;letection ~ 50%
efficiency

PMT x 2.5 Absolute value is unknown.

Dark count rate <10 Mcps < 10 Mcps Cooled down to -10°C

Cross talk & o oo
After pulse <25% 20% Array type package.

3dB Bandwidth 5 MHz 8.5 MHz w/ Pole-Zero Cancellation

Electrical noise <10 nV/{Hz <10 nV/{Hz

See Poster E01.00160 : Development of a silicon photomultiplier module for ACME il
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SYSTEMATIC ERROR CONTROL

) WO r k| N g to contro I SySte m at| C errors Table 1 | Systematic shifts for ..'* and their statistical uncertainties
Parameter Shift Uncertainty
observed in ACME Il 08,02 and 05, /oy 7 59
08 (via 089 0 1
Pt - 109
» Improved magnetic field control - 6w
¢ and |c[N*B 77 125
o€ (via BS) 1 1
M M . Other magnetic-field gradients (4) - 134
} N €W ma g n etl CS h € I d In g Non-reversing magnetic field, BY' - 106
Transverse magnetic fields, BY', BY - 92
. Refinement- and readout-laser detunings - 76
» Also reduces noise from beam oot et - .
. . . Total systematic 29 310
Ve I O Clty d IS p e rS I O n Statistical uncertainty 373
Total uncertainty 486

Values are shown inprad s !, All uncertainties are added in quadrature. For £eff = 78 GV cm !,

» Reducing stress induced birefringence  «-o eomemmonsori-cumn=isws
. . Table from: ACME Collaboration et al., Improved
N f| e I d p I ateS Limit on the Electric Dipole Moment of the
Electron, Nature (2018).
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ADVANCED ACME PROPOSED GAINS

od,

T oTE /N

Improvement Signal Gain

Increased Precession Time

Electrostatic Lens

SIPM Detector Upgrade

Timing Jitter Noise Reduction

Total

EDM Sensitivity Gain

20
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