Motivation

$$H_d = -\vec{d}_e \cdot \vec{E}$$

Permanent EDMs violate T symmetry.

Many theories beyond the Standard Model predict T violation and EDMs at current experimental precision.

ACME II Apparatus

1. **Buffer Gas Beam Source**
2. **Rotational Cooling**
3. **EDM State Preparation**
4. **Precission**
5. **State Readout**
6. **Magnetic Field Coils**
7. **Electric Field Plates**
8. **Detection**

Solid angle enhancement

$$d_e = h C_{accep} \tau$$

$C =$ measurement contrast
$\tau =$ coherence time
$$C_{accep} = \text{effective electric field}$$
$\eta =$ molecule flux
$\tau =$ integration time

Large C_{accep} inside ThO molecule

State Preparation

Preparation of spin precession state performed via optical pumping with \approx 6% efficiency.

Cohesive state preparation via STIRAP has $\approx 75\%$ demonstrated efficiency.

STIRAP gives $\approx 12 \times$ gain in state preparation.

See poster “Twelve-fold increase in the number of usable ThO molecules for the ACME electron electric-dipole measurement through STIRAP.” Panda et al.

Refinement and readout beam control

Monitor and feedback on preparation and readout beams to suppress anticipated Stark interference phase offset, and relative Doppler shift between two readout beams.

Also monitor and correct ellipticity in preparation and readout beams to suppress anticipated phase offset.

Detection wavelength

PMTs detect 512 nm with $\approx 75\%$ efficiency.

Improve electric field plates

High-power laser beams

Thermal induced stress

Breakdown fields

Elipticity gradiences

Symmetry error

Summary of upgrades

Feature

Anticipated systematic error improvement

Beamline geometry

$\approx 10 \times$

Suppressed STIRAP polarization fluctuations, AC Stark shifts, AC Stark interference.

Fluorescence collection

$\approx 2.5 \times$

Reduced field plates birefringence

STIRAP state preparation

$\approx 12 \times$

Suppress ellipticity gradients

Detection wavelength

$\approx 2.5 \times$

Monitor and feedback to reduce Stark interference.

Total projected statistical improvement

$\approx 380 \times$

Measure non-reversing magnetic field near spin precession region to suppress AC Stark shift phases.

Thermochemical Beam Source

Thermochemical target ($Th + ThO$)

Equilibrium partial pressure of ThO

$\approx 10^{-10}$

Light collection

Optimized collection optics using light pipes instead of fiber bundles with $\approx 50\%$ packing fraction increases detection by $\approx 2.5 \times$

References

More information: www.electronedm.info

5. “Ablation yield and pulse shapes.” Equilibrium partial pressure of ThO.