TOWARDS A NEW MEASUREMENT OF THE ELECTRON EDM

COLE MEISENHELDER CUA PIZZA TALK

SECTION I: WHY ARE EDMS INTERESTING?

MOTIVATION

- The Standard Model cannot answer all questions
- Dark matter and dark energy remain unexplained
- Matter-Antimatter
 Asymmetry Problem

POSSIBLE SOLUTION TO BARYON ASYMMETRY

- Sakharov Conditions (1967) allow for Baryon Asymmetry
- CP Violation
 - Allowed in quark mixing
 - Standard Model does not account for the observed asymmetry
 - Need physics Beyond the Standard Model (BSM)
 - CPT theorem makes CP and T violations equivalent

EDMS AND CP VIOLATION

- Permanent EDMs inherently violate P and T
- Standard Model predicts electron EDM $< 10^{-38} e \cdot cm$
- Current limit: $|d_e| < 1.1 \times 10^{-29} e \text{ cm}$
- Many BSM theories predict nonzero eEDMs near our sensitivity

PLACING LIMITS ON NEW PHYSICS

SUSY particle bounds from the ACME II result. Fig. from Matt Reece (unpublished). ACME III projection (~10⁻³⁰ e cm) dashed. Key EDM results since 2010. Two-loop sensitivity from Nakai & Reece (2017). One-loop sensitivity from Feng (2013). LHC scale gives stop mass sensitivity.

SECTION II: HOW CAN WE MEASURE AN ELECTRON EDM?

HOW DO WE MEASURE AN EDM?

An eEDM will precess in both electric and magnetic fields

$$\begin{split} E &= -\vec{d_e} \cdot \vec{\mathcal{E}} - \vec{\mu} \cdot \vec{B} \\ \phi(\vec{\mathcal{E}}) &= E\tau/\hbar = -(\vec{d_e} \cdot \vec{\mathcal{E}} + \vec{\mu} \cdot \vec{B})\tau/\hbar \end{split} \stackrel{\vec{\mathbf{E}}_{\text{eff}} \ \vec{B}}{\uparrow} \quad \hat{\vec{x}} \stackrel{\hat{\vec{\mathcal{E}}}_{\text{eff}} \ \vec{B}}{\downarrow} \quad \hat{\vec{x}} \stackrel{\hat{\vec{\mathcal{E}}}}{\downarrow} \quad \hat{\vec{X}} \stackrel{\hat{\vec{\mathcal{E}}}}{\downarrow} \quad \hat{\vec{X}} \stackrel{\hat{\vec{\mathcal{E}}}_{\text{eff}} \ \hat{\vec{B}}}{\downarrow} \quad \hat{\vec{X}} \stackrel{\hat{\vec{\mathcal{E}}}_{\text{eff}} \ \hat{\vec{B}}}{\downarrow} \quad \hat{\vec{X}} \stackrel{\hat{\vec{\mathcal{E}}}}{\downarrow} \quad \hat{\vec{X}} \stackrel{\hat{\vec{B}}}{\downarrow} \quad \hat{\vec{X}} \stackrel{\hat{\vec{A}}}{\downarrow} \quad \hat{\vec{X}} \stackrel{\hat{\vec{A}}}{\vec{X}} \stackrel{\hat{\vec{A}}}}{\vec{X}} \stackrel{\hat{\vec{A}}}{\vec{X}} \stackrel{\hat{\vec{A}}}{\vec{X}} \stackrel{\hat{\vec{A}}}{\vec{X}} \stackrel{\hat{\vec{A}}}{\vec{X}} \stackrel{\hat{\vec{A}}}{\vec{X}} \stackrel{\hat{\vec{A}}}{\vec{X}} \stackrel{\hat{\vec{A}}}{\vec{X}} \stackrel{$$

Reverse E field for differential measurement

$$\phi_{EDM} = (\phi(\vec{\mathcal{E}}) - \phi(-\vec{\mathcal{E}}))/2$$
$$\phi_{EDM} = -(\vec{d_e} \cdot \vec{\mathcal{E}})\tau/\hbar$$

AN EDM IN THO

- Molecules can provide strong internal electric fields
 - \blacktriangleright ThO has $E_{eff} \sim 80 \; GV/cm$
- We can flip this electric field by probing different states
 - Powerful method for eliminating systematic errors
 - ThO only requires a small applied field

 $|m_{\mathbf{J}}=0\rangle$

MOLECULAR EDMS

- Molecules can provide strong internal electric fields
 - ThO has E_{eff} ~ 80 GV/cm
- We can flip this electric field by probing different states
 - Powerful method for eliminating systematic errors
 - ThO only requires a small applied field

MOLECULAR EDMS

- Molecules can provide strong internal electric fields
 - ThO has $E_{eff} \sim 80 \text{ GV/cm} \quad \vec{E} \quad \vec{B}$
- We can flip this electric field by probing different states
 - Powerful method for eliminating systematic errors
 - ThO only requires a small applied field

EXPERIMENTAL SENSITIVITY

For a shot noise limited measurement we

$$\delta\omega \propto \frac{1}{\tau\sqrt{\dot{N}T}}$$
 τ Coherence time
 $\dot{N} = \text{Count rate}$
 $T = \text{Averaging time}$

For our experiment we have $\mathcal{H}_{EDM} = -\vec{d_e} \cdot \vec{\mathcal{E}_{eff}}$

$$\delta d_e \propto \frac{1}{\mathcal{E}_{eff} \tau \sqrt{\dot{N}T}}$$
 $\mathcal{E}_{eff} = \text{Electric field}$

EXPERIMENT STRUCTURE

STATE PREPARATION

- Stimulated Raman Adiabatic
 Passage (STIRAP)
 - Coherent population transfer from X to H
 - ~75% transfer efficiency
- State Refinement
 - Optically pump into dark state with desired polarization
 - Suppress residual STIRAP phases

STATE READOUT

- Project phase onto orthogonal polarizations
- Rapidly switch polarization at 200 kHz
 - AOMs allow rapid switching
- Detect fluorescence with 8 PMTs

STATE READOUT

- Project phase onto orthogonal polarizations
- Rapidly switch polarization at 200 kHz
 - AOMs allow rapid switching
- Detect fluorescence with 8 PMTs

ACME II RESULT

ACME Collaboration et al., Nature (2018):

$$d_e = (4.3 \pm 3.1_{stat} \pm 2.6_{syst}) \times 10^{-30} e \text{ cm}$$

Implies a 90% C. L. upper limit of:

 $|d_e| < 1.1 \times 10^{-29} e \text{ cm}$

Probes new physics up to ~30
 TeV at 1-loop level

Table 1 Systematic shifts for ω^{NC} and	their statisti	cal uncertainties
Parameter	Shift	Uncertainty
$\partial \mathcal{B}_z / \partial z$ and $\partial \mathcal{B}_z / \partial y$	7	59
$\omega_{\rm ST}^{NE}$ (via $\theta_{\rm ST}^{\rm H-C}$)	0	1
$P_{ref}^{\mathcal{NE}}$	-	109
\mathcal{E}^{nr}	-56	140
$\mathcal{C} ^{\mathcal{NE}}$ and $ \mathcal{C} ^{\mathcal{NEB}}$	77	125
$\omega^{\mathcal{E}}$ (via $\mathcal{B}_{z}^{\mathcal{E}}$)	1	1
Other magnetic-field gradients (4)	-	134
Non-reversing magnetic field, \mathcal{B}_z^{nr}	-	106
Transverse magnetic fields, \mathcal{B}_x^{nr} , \mathcal{B}_y^{nr}	-	92
Refinement- and readout-laser detunings	-	76
$ ilde{\mathcal{N}}$ -correlated laser detuning, $ extsf{D}^{\mathcal{N}}$	-	48
Total systematic	29	310
Statistical uncertainty		373
Total uncertainty		486

Values are shown in μ rad s⁻¹. All uncertainties are added in quadrature. For $\mathcal{E}_{eff} = 78 \text{ GV cm}^{-1}$, $d_e = 10^{-30}e \text{ cm}$ corresponds to $|\omega^{\mathcal{N}\mathcal{E}}| = \mathcal{E}_{eff}d_e/\hbar = 119 \,\mu$ rad s⁻¹.

17

SECTION III: A NEW ACME MEASUREMENT

ACME III OVERVIEW

INCREASED H-STATE LIFETIME

- In January measured H-state lifetime to be 5.3 ms
- Last lifetime measurement showed a lower bound of just 1.8 ms
- ACME II used only 1 ms (20 cm) precession time
- Currently working on measurement to reduce uncertainty of H-state lifetime

ELECTROSTATIC LENS FOR THO MOLECULES

- Without a lens, fewer than .04% of molecules reach the detector
- Electrostatic lens focuses molecules into the EDM region, giving
 ~20x gain in signal (including the efficiency of double-STIRAP)
- Efficient STIRAP into the Q state allows for strong focusing

21

CONTROLLING EXCESS NOISE FOR ACME III

- ACME II had 1.7 times more noise than expected from the shot noise limit
- Noise came from 2 effects:
 - Large scale timing jitter
 - Timing offset between X and Y polarization bins
 - We can now control both parameters to reduce this noise

DETECTION UPGRADES

- SiPMs provide a significant gain over the PMTs used in ACME II
- Increased light pipe diameter improves our geometric collection efficiency

	Requirement	Measured	Comment
Photon detection efficiency	~ 50%	$PMT \times 2.5$	Absolute value is unknown.
Dark count rate	< 10 Mcps	< 10 Mcps	Cooled down to -10°C
Cross talk & After pulse	< 25%	~ 20%	Array type package.
3dB Bandwidth	5 MHz	8.5 MHz	w/ Pole-Zero Cancellation
Electrical noise	< 10 nV/√Hz	< 10 nV/√Hz	

ACME III PROPOSED GAINS

$$\delta d_e = \frac{1}{2T \mathcal{E}_{eff} \sqrt{N}}$$

Improvement	Signal Gain	EDM Sensitivity Gain
ncreased Precession Time	0.20	2.3
Electrostatic Lens	20.5	4.5
SiPM Detector Upgrade	2.3	1.5
Timing Jitter Noise Reduction	1	1.7
Total	9.4	26.4

OUTLOOK

- EDM searches are a powerful tool for studying BSM physics
- The ACME II measurement placed the strongest limit on the eEDM to date
- Promising path towards a new measurement with an order of magnitude improvement in sensitivity

THE ACME COLLABORATION

Yale

David DeMille (PI) Xing Wu (postdoc) James Chow (grad student) Zhen Han (grad student) Peiran Hu (grad student)

Harvard

John Doyle (PI) Xing Wu (postdoc)

Northwestern

Gerald Gabrielse (PI) Daniel Lascar (Research Asst. Prof.) Daniel Ang (Harvard grad student) Siyuan Liu (grad student) Bingjie Hao (grad student)

Okayama University

Takahiko Masuda (Associate Professor) Koji Yoshimura (Professor) Satoshi Uetake (Associate professor) Noboru Sasao (Professor)

James Chow Zhen Han

Dan Lascar

Xing Wu

John Doyle

David DeMille

Gerald Gabrielse

Siyuan Liu

Cole M.

Bingjie Hao

Daniel Ang