

<u>Abstract:</u> The ACME Collaboration recently reported an order of magnitude improved limit on the electric dipole moment of the electron (eEDM) (ACME collaboration, Science 343 (2014), 269-272), setting more stringent constraints on many time reversal (T) violating extensions to the Standard Model. The experiment was performed using spin precession measurements in a molecular beam of thorium oxide. We report here on a new method of preparing the coherent spin superposition state that represents the initial state of the spin precession measurement using STImulated Raman Adiabatic Passage (STIRAP). We demonstrate a transfer efficiency of 75% giving a twelve-fold increase in signal. We discuss the particularities and challenges of implementing STIRAP in the ACME measurement and the methods we have used to overcome them.

- electrons oriented oppositely with respect to the molecular electric field by performing a Ramsey-type phase measurement to observe molecule precession.

$$\delta d_e = \frac{\hbar}{\partial a_e c_e}$$

$$au = coherence time$$

 $T = number of molecular of molecular of the set of t$

efficiency.

STIRAP Preparation of a Coherent Superposition of ThO $H^3\Delta_1$ States

ACME Collaboration: C. D. Panda,¹ B. R. O'Leary,² A. D. West,² J. Baron,¹ P. W. Hess,¹ C. Hoffman,¹ E. Kirilov,² C. B. Overstreet,¹ E. P. West,¹ D. DeMille², J. M. Doyle¹ and G. Gabrielse¹ Affiliation: ¹Harvard University, ²Yale University

For more information, electronedm.info