ThO Useful Information

Compiled by: ACME Collaboration

1 Level diagram

Figure 1: Energy level diagrams of ThO. Grey lines indicate levels less likely to be useful for ACME III. Lowest three levels X, H, Q colored with blue, red, purple. Transition wavelengths are given in corresponding colors in nm.

For more energy level details [1]. References for the next page:

• Marian et al, Journal of Molecular Structure (Theochem), 169 (1988) 339-354

[•] Paulovic et al, Journal of Chemical Physics, Volume 119 Number 2, (2003)

 $[\]bullet\,$ *Edvinsson et al, Ark. Fys. Band 30 nr. 22, 1965

[•] Edvinsson et al, Journal of Molecular Spectroscopy 113, 93-104 (1985)

[•] Original ThO cheat sheet

2 Electronic state general information

State	Ω	$^{2S+1}\Lambda$	$T_0[cm^{-1}]$	$\omega_{\rm e} [{\rm cm}^{-1}]$	$\mathrm{B_e}[\mathrm{cm}^{-1}]$	$r_{\rm e}[{\rm \AA}]$	$\mu_{\rm E}[{\rm D}]$
Х	0	$99.9\% \ ^{1}\Sigma^{+}$	0	895.77	0.33264	1.84	2.8
Н	1	$98.4\%^{3}\Delta, 1.1\%^{3}\Pi, 0.5\%^{1}\Pi$	5316.6	857.2	0.32638	1.858	4.2
Q	2	$94.1\%^{3}\Delta, 4.0\%^{1}\Delta, 1.9\%^{3}\Pi$	6127.92	858.42	0.32703	1.856	4.1
А	0	$95.3\%^{3}\Pi, 4.7\%^{1}\Sigma^{+}$	10600.82	846.4	0.32304	1.867	
С	1	$76.6\%^1\Pi, 19.5\%^3\Pi, 1.5^3\Delta$	14490.02	825.1	$\begin{array}{c} 0.32246 \\ 0.32162 \end{array}$	1.870	2.6
Е	0	$53.1\%^{1}\Sigma^{+}, 35.1\%^{3}\Sigma^{-}, 9.9\%^{3}\Phi$	16320.37	829.26	0.32309	1.867	
Ι	1	$\sim 20\%^3 \Pi_1 / {}^1 \Pi_1$	19538.99		$0.32869 \\ 0.00154$		4.2

Table 1: The rotational constants are given for both the upper and lower Ω doublets in the C state. For the I state, the Λ doublet is given instead.

3 Measured spectrum

$\mathbf{V} = C (600 \mathrm{nm})$		X - A (944nm)			
$\frac{X = C (0901111)}{D(0)}$	14400.04	P(1)	10600.15	H - I (703nm)	
R(0)	14490.64	P(2)	$10599\ 47$	$\overline{\Omega(1)}$	14222.43
Q(1)	14489.98	D(2)	10508 77		11222.10
Q(2)	14489.93	$\Gamma(0)$	10598.77	O \mathbf{I} (\mathbf{F} (\mathbf{a})	
O(3)	14489.86	R(0)	10601.47	Q - 1 (746nm)	
Q(0)	14400.77	$\mathrm{R}(1)$	10602.09	P(2)	13409.78
Q(4)	14489.77	$\mathbf{R}(2)$	10602.70		
Q(5)	14489.67		1000	O = C (1106nm)	
Q(6)	14489.53	$\mathbf{H} = (1000)$		$\frac{Q = C (11901111)}{D(2)}$	0000 =1
P(2)	14488 65	H - C (1090nm)		P(2)	8360.71
$\Gamma(2)$	14407.05	Q(1)	9173.38	R(2)	8363.92
P(3)	14487.95				

4 Ω doublet splitting

$\mathbf{H}(J=1)$	$\mathbf{Q}(J=2)$	$\mathcal{C}(J=1)$	$\mathbf{I}(J=1)$
360kHz	$< 10 \mathrm{kHz}$	51MHz	91MHz
[BO]	[XW]	[BO]	[CP]

5 Lifetime

Н	Q	С	Ι
4.2(5)ms	$> 62 \mathrm{ms}$	468(30)ns	115(4)ns
[DGA]	[XW]	[TS]	[TS]

6 Electronic branching ratios

$ f\rangle$	$ \langle f \mid C \rangle ^2$	$\omega ({\rm cm}^{-1})$	Computed branching $(\%)$	Range (%)	Measured
X	0.77	14490	88.0	73 - 95	88(6)%
H	0.09	9174	2.7	1 - 7	
Q	0.37	8362	8.2	3 - 20	10(2)%
A	0.13	3890	0.3	0.1 - 0.8	
B	0.58	3361	0.8	0.3 - 2.3	

Table 2: Estimated and measured electronic branching ratios from C state [XW,ZL].

$ f\rangle$	$ \langle f \mid I \rangle ^2$	$\omega ({\rm cm}^{-1})$	Branching (%)
X(v=0)	0.77	19538	91
X(v=1)	0.09	18648	1
H(v=0)	0.37	14224	5
Q(v=0)	0.13	13420	3

Table 3: Measured electronic branching ratios from I state [TS].

7 Vibrational branching ratios

H,v=0 to $X,v=0\sim94\%$ [CP] C,v=0 to $X,v=0\sim84\%$ [ZL]

- Ω doublet: H(pg 11)[6]; Q(pg 2)[10]; C(pg94)[6]; I(pg 79)[7].
- Lifetime: H(pg 1)[3]; Q(pg 5)[10]; C(pg 1)[2]; I(pg 1)[2].
- Electronic branching: C(pg 63)[5]; I(pg 8)[2].
- Vibrational branching: H(pg 59)[7]; C(pg 63)[5].

	Х	Н	Q	А	С	E	Ι
Х	1.09(1) [TS]			$\begin{array}{c} 0.15(4) \\ [\mathrm{DGA}] \end{array}$	0.51(2) [XW]		0.72 [TS]
Н		1.67(4) [AV]		$\begin{array}{c} 0.31(9) \\ [\mathrm{DGA}] \end{array}$	0.02 [CP]	0.018(11) [BS]	0.27 [CP]
Q			1.60 [XW]		0.40 [XW]		0.23 [TS] 0.16 [XW]
А	$\begin{array}{c} 0.15(4) \\ [\mathrm{DGA}] \end{array}$	$\begin{array}{c} 0.31(9) \\ [\mathrm{DGA}] \end{array}$					
С	0.51(2) [XW]	0.02 [CP]	0.40 [XW]		1.03 [XW]		
Е		0.018(11) [BS]				$\begin{array}{c} 1.39(1) \\ [\mathrm{TS}] \end{array}$	
Ι	0.72 [TS]	0.27 [CP]	0.23 [TS] 0.16 [XW]				1.67(1) [TS]

8 E1 (reduced) matrix element

Table 4: E1 reduced matrix given in ea_0 or 1.28 MHz/(V/cm) or 2.54 D. For actual matrix element, an extra factor of

 $\pm \sqrt{(2J+1)(2J'+1)} \begin{pmatrix} J & 1 & J' \\ -\Omega & (\Omega - \Omega') & \Omega' \end{pmatrix} \begin{pmatrix} J & 1 & J' \\ -M & (M - M') & M' \end{pmatrix}$ is picked up for an E field in the Z direction. In the limit of full mixing so that the good

is picked up for an E field in the Z direction. In the limit of full mixing so that the good quantum numbers are J, M, Ω , this factor reduces to $\pm \frac{\Omega M}{J(J+1)}$.

- Ang: lab log October 8, 2021
- Steimle: pg 2[9]; pg 8[2]; pg 1[4].
- Lasner: pg 32, 291[5].
- Spaun: pg 62[8].
- Panda: pg 51, 76[7].
- Wu: pg 7, 9[10].

9 M1 (reduced) matrix element

	Х	Н	Q	С	Ι
Х	< 0.001 [XW]			0.9(2) [BO]	
Н		-0.0088(5) [XW]		0.08(3) [BO]	0.08(5) [BO]
Q			2.07(11) [XW]		
С	0.9(2) [BO]	0.08(3) [BO]		$\begin{array}{c} 1.23(6) \\ [\mathrm{XW}] \end{array}$	
Ι		0.08(5) [BO]			0.5260(1) [TS]

Table 5: Directly or indirectly measured g factor. The actual Zeeman shift is given by the diagonal terms $-\mathcal{B}_Z \mu_B g \frac{M\Omega}{J(J+1)}$. For actual off diagonal terms, an extra factor like that of table 4 is picked up. Mostly only diagonal terms (g factor) are important. Off diagonal terms are useful for Stark interference systematics estimation.

• Steimle: pg 4[4].

[•] Wu: pg 3, 12[10].

[•] O'Leary: pg 77[6].

References

- [1] The electronic structure of thorium monoxide: Ligand field assignment of states in the range 0–5 eV Kaledin 2019 Journal of Computational Chemistry Wiley Online Library.
- Phys. Rev. A 90, 062503 (2014) Branching ratios and radiative lifetimes of the \$U\$, \$L\$, and \$I\$ states of thorium oxide.
- [3] D. G. Ang, C. Meisenhelder, C. D. Panda, X. Wu, D. DeMille, J. M. Doyle, and G. Gabrielse. Measurement of the H\$^3\Delta_1\$ Radiative Lifetime in ThO, Apr. 2022. Number: arXiv:2204.05904 arXiv:2204.05904 [physics].
- [4] D. L. Kokkin, T. C. Steimle, and D. DeMille. Characterization of the \$I(|\ensuremath{\Omega}|=1)-X\phantom{\rule{0.16em}{0ex}}{^{1}{1}{\ensuremath{\Sigma}}^{1}{ band of thorium oxide. *Physical Review A*, 91(4):042508, Apr. 2015. Publisher: American Physical Society.
- [5] Z. Lasner. Order-of-magnitude-tighter bound on the electron electric dipole moment.
- [6] B. R. O'Leary. In search of the electron's electric dipole moment in thorium monoxide: an improved upper limit, systematic error models, and apparatus upgrades.
- [7] C. Panda. Order of magnitude improved limit on the electric dipole moment of the electron.
- [8] B. N. Spaun. A Ten-Fold Improvement to the Limit of the Electron Electric Dipole Moment. page 229.
- [9] F. Wang, A. Le, T. C. Steimle, and M. C. Heaven. Communication: The permanent electric dipole moment of thorium monoxide, ThO. The Journal of Chemical Physics, 134(3):031102, Jan. 2011.
- [10] X. Wu, Z. Han, J. Chow, D. G. Ang, C. Meisenhelder, C. D. Panda, E. P. West, G. Gabrielse, J. M. Doyle, and D. DeMille. The metastable Q ³△₂ state of ThO: a new resource for the ACME electron EDM search. *New Journal of Physics*, 22(2):023013, Feb. 2020.