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1 Introduction

A buffer-gas beam produced from a single-stage cell in the hydrodynamic regime has a large

extraction efficiency of ∼ 10% and a modest forward velocity of vf ∼ 150 m/s. A small

beam divergence is observed for heavy species. The angular spread of the beam scales as

θ = 2 arctan( δvt/2
vf

) = 2 arctan(

√
8 ln 2kBT/M

2vf
), where δvt is the transverse velocity spread of

the molecular beam and M is the molecular mass. In addition, using neon as the buffer gas

allows efficient cryopumping, leading to a high vacuum in the scientific chamber. With these

beam properties, neon-based, hydrodynamic buffer-gas beams have been used in precision

measurements.

One possible application of the buffer-gas beams is trap loading. For a molecular beam

with mass 20 a.u, a moving velocity of vf = 150 m/s corresponds to a kinetic energy of 27 K.

The largest magnetic trap in our lab (the big quadrupole trap) has a trap depth of Bmax=4

T or 2.7 K for one Bohr magneton species. Apparently, a hydrodynamic beam needs to be

slowed down for direct trap loading.

A potential way to load the hydrodynamic beam into the trap without additional slowing

is to rely on a single collision happening in the trap center. If the molecular beam collides
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Figure 1: (a) Schematic of loading molecules into a magnetic trap using a single collision
between a molecular beam with a neon beam. The molecular beam is sent along the magnet
bore and collides with the neon beam which enters the magnet from the midplane. The
magnetic trap shown here has a depth of 4 T, with an inner radius of 3.9 cm and a length of
12” (set by the length of its cask). The opening on the side of the magnet for the Ne beam
has a diameter of 1 cm. (b) The magnet midplane is shown in cross section. A molecular
beam with an angular spread of 30 degrees would fill the magnet bore.

with the other Ne beam, the molecule may end up with an energy lower than the trap depth

after the elastic collision. The question is how efficient is the loading process? The first part

of this write-up ”only” considers the possibilities of creating trappable molecules after the

elastic collision. Realistic loading efficiencies using two buffer-gas beams would definitely

be lower than the above possibilities due to the molecular divergence and other physical

constraints. Fig. 1 shows an experimental setup for loading molecules into a trap relying on

cross beam collisions. A hydrodynamic beam has a smaller divergence than a supersonic or

effusive beam. However, its finite divergence can still cause collisions to occur outside the

trap center, where the local trap depth seen by the molecules after collisions is reduced (or

given by Bmax−Blocal, with collisions happening at Blocal). Numerical simulations considering

the molecular divergence and collisions inside the trap will be shown in the second part of

this document.
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2 Efficiency of a single elastic collision

Based on the energy and momentum conservation laws for the elastic collision, we can write

down the following equations.

E1 + E2 = E ′1 + E ′2, (1)

~p1 + ~p2 = ~p1
′ + ~p2

′, (2)

where ~p and E (~p′ and E ′ ) are the momentum and energy of the particle before (after) the

collision. The subscripts indicate which particle is concerned. The momentum conservation

relation can be rewritten as

~p1
2 + ~p2

2 + 2|~p1||~p2| cos θ = ~p1
′2 + ~p2

′2 + 2|~p1
′||~p2

′| cos θ′

⇒ m1E1 +m2E2 + 2
√
m1E1m2E2 cos θ = m1E

′
1 +m2E

′
2 + 2

√
m1E ′1m2E ′2 cos θ′, (3)

where θ (θ′) is the angle between the two beams before (after) the collision.

Experimentally, we can measure the initial forward velocities of the cross beams and

control the collision angle. This means we can set E1, E2, and θ to known values in Eq.

1 and Eq. 3, and only need to solve three unknown parameters, E ′1, E ′2, and θ′ for each

experimental condition. There should be various ways to solve this problem numerically.

The method I chose is as follows:

(1) For given values of E1, E2, and θ, E ′1 (molecular’s energy after collision) is chosen be-

tween 0 and Et = E1 + E2.

(2) E ′2 = Et − E ′1 is hence constrained by Eq. 1.

(3) Find if a scattering angle θ′ exists according to Eq. 3.

(4) Count the total number of scattering events, Nt, and the number of events with E ′1 lower

than the trap depth, Nloadable.
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Fig. 2 shows the probabilities, Nloadable/Nt, of molecules with energies lower than the

trap depth. Here, three molecular beams colliding with a neon beam (vf=150 m/s) are

calculated. Fig. 2(a) is a special case where where two beams have an identical mass. At a

collision angle of 90◦, analytical solutions can be obtained. In this special case, Eq. 1 and

Eq. 3 become

E1 + E2 = E ′1 + E ′2 (4)

E1 + E2 = E ′1 + E ′2 + 2
√
E ′1E

′
2 cos θ′. (5)

The solutions are

Et = E ′1 + E ′2 (6)

cos θ′ = 0→ θ′ = 90◦. (7)

Molecules with any scattered energy between 0 and Et can satisfy Eq. 7. The probability of

scattered molecules with energy less than the trap depth is hence given by p = Edepth/Et.

For two beams moving at 150 m/s and a trap depth of 2.7 K (we assume the magnetic

dipole moment is 1µB again), p = 2.7K/(2× 27K) = 0.05, which is consistent the numerical

solutions shown in Fig. 2(a).

With this special example, we can also learn that the slower the molecular and Ne

beams, the higher the loading efficiency. Of course, a higher trap depth would also increase

the efficiency, meaning the single collision loading would be more efficient for more magnetic

molecules. Results for colliding CaH and CaF beams with the Ne beam are shown in Fig.

2(b), (c). As the molecular mass increases, the optimal collision angle increases as well.
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Figure 2: Probabilities of scattered molecules with kinetic energies lower than a trap depth
of 2.7 K. (a) Mass 20 molecular beam, (b) CaH beam, and (c) CaF beam collide with a neon
beam with vf=150 m/s. x axis indicates the velocities of the molecules and y axis represents
the relative angle of the cross beams, θ.
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3 Loading efficiency of the cross Beams

If the molecular beam has a very narrow transverse velocity spread, the probabilities cal-

culated above would be very close to the trap loading efficiency. Assuming the molecular

beams are produced from a single-stage cell at a base temperature of 13 K, the corresponding

transverse velocity spreads are 120 m/s and 100 m/s for CaH and CaF beams. Assuming

the molecular beams has vf = 150 m/s, the angular spreads are 44◦ for CaH and 37◦ for

CaF. Given the geometry of the big quadrupole trap, a molecular beam placed outside the

cask with an angular spread of 30 ◦ would cover the magnet midplane, as shown in Fig. 1.

Apparently, a full trajectory simulation is needed to know the loading efficiency of molec-

ular beams with finite angular spreads. The trajectory simulation of collision loading is built

on top of the simulation codes used for optical loading. First, let’s go over some relevant

simulation conditions. Fig. 3 shows the orientation of the cross beams and magnet used

in the simulations. The magnet is the big quadrupole trap with a depth of 4 T; its bore is

aligned along the z axis and centers at x = 0. The cell aperture for the molecular beam

locates at (x = Xcell, z = 0) and the molecular beam can be rotated relative to the z axis.

Finally, the Ne beam enters the magnet from the side. Since the opening on the side of the

magnet has a radius of 0.5 cm and the magnet cask is 3” thick, we can ignore the divergence

of the Ne beam and set the radius of the Ne beam to be rNe = 0.5 cm.

The a trajectory simulation of the loading process contains the following few steps:

(1) Evolve the molecular trajectory starting from the cell aperture until the molecule reaches

the Ne beam (or from z = 0 to z = Ztrap center − rNe). This process takes t = t1.

(2) Once the molecule enters the area occupied by the Ne beam (z > Ztrap center − rNe and

|y| ≤ rNe), we pick a scattering time τscat, which determines when the scattering event will

happen. We check if the chosen τscat is shorter than the traversing time of the molecule

through the Ne beam. If it does, we then move on the next step.

(3) Evolve the molecular trajectory for a duration of τscat, and then let the elastic collision

event occur at time t = t1 + τscat ≡ t2.
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Figure 3: Schematic of the cross beams and the magnet used in the simulation. The magnet
bore is along the z axis and centers at x = 0. The cell aperture locates at (Xcell, z = 0) and
the trap center is at some distance downstream, Ztrap center. The molecular beam axis can
be rotated relative to the z axis with an angle φ, and Xcell can be adjusted. A colliding Ne
beam always enters from the midplane of the magnet (its forward velocity is along +x axis).

(4) Keep evolving the molecular trajectory for some time and determine if the molecule stays

in the trap.

The codes for the trajectory simulation in the magnetic field are essentially the same for those

used in the optical loading simulation. Additional simulation codes are written to treat the

elastic collision (Step (2), (3)) inside the trap. (Note: these codes are ”CheckScattering.m”,

”GetScatteringTime.m”, and ”ScatterParticle.m”.) The concepts behind these codes are

based on Robert Michniak’s thesis.

How to choose the scattering time

When the molecule sees the Ne beam, the mean time between collisions is given by

τ̄ =
1

nNeσV̄rel

, (8)

where nNe is the density of the Ne beam, σ is the molecule-Ne elastic cross section, and

|~Vrel| = |~vf,Ne − ~vf,molecule| is the mean relative velocity. A realistic scattering time would

be different from the mean scattering time and can be chosen according to the probability
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function

P (τscat) =
e−τscat/τ̄

τ̄
, (9)

with
∫∞

0
P (τscat)dτscat = 1.

How to handle the elastic collision

The energy and momentum conservation equations in the center of mass (COM) frame can

be written as

m1 ~u1 +m2 ~u2 = m1 ~u1
′ +m2 ~u2

′ = 0

m1 ~u1
2 +m2 ~u2

2 = m1 ~u1
′2 +m2 ~u2

′2, (10)

where ~u = ~v − ~Vcm (~u′ = ~v′ − ~Vcm) is the velocity of the particle before (after) the collision

in the COM frame. The solutions are

u2
1 = u′21

u2
2 = u′22 . (11)

Eq. 11 tells us that the effect of an elastic collision is to randomize direction of the molecule

after scattering in the COM frame. With this concept, we can transform the molecular

velocity ~v1 at time t2 and the velocity of the Ne atom ~v2 (chosen according to the Ne beam

properties) to ~u1 and ~u2 in the COM frame. After scattered in the COM frame, the molecular

velocity ~u1
′ should have the same value before the collision but its direction can be chosen

randomly. Finally, we transform ~u1
′ back to the lab frame and continue Step (4).

3.1 Simulation results

A special case:

We first use the simulation codes to calculate the loading efficiency of colliding a molecular

beam (mass 20 a.u.) with a Ne beam at 90◦. Both the molecular and Ne beams have a
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Figure 4: Distribution of the scattering time generated for 1000 molecules colliding with
a Ne beam which has a density of nNe = 5 × 1014cm−3. At this density, the number of
scattering time generated is equal to the input molecular number, meaning that a single
collision between the molecule and Ne would definitely occur.

forward velocity of vf = 150 m/s; The longitudinal and transverse velocity spreads, δvl and

δvt, of the molecular beam are set to 2 m/s; δvl,Ne is set to 2 m/s as well. In addition,

the distance between the cell aperture to the trap center is Ztrap center = 15 cm. In this

special case, the beam divergence should have negligible effects and the loading efficiency

should be consistent with the results calculated in Section 2. We can also verify if the new

codes developed for handling collisions are correct. The distribution of the scattering time

generated for 1000 molecules is shown in Fig. 4. The average scattering time for these

molecules is 9.36 µs, which is equal to τ̄ in Eq. 8. The loading efficiency for these 1000

molecules is 4.8 %, which is consistent with the results shown in Fig. 2(a). Fig. 5 shows the

trajectory of one loaded molecule.

Effect of beam divergence:

Fig. 6 shows the loading efficiency of a molecular beam versus the transverse velocity spread.

We can see that the efficiency drops rapidly with increasing beam divergence. Using a 13

K cell to generate a mass 20 a.u. molecular beam would likely produce δvt=172 m/s. This

means the loading efficiency would be even lower than the values indicated in Fig. 6. One

way to mitigate the loss due to the beam divergence is to move the cell closer to the trap
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Figure 5: (a) Trajectory of one loaded molecule. (b) Magnetic field experienced by the
molecule during the loading process. (c) Kinetic energy of the molecule. Collision occurs at
t∼1 ms.
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Figure 6: Loading efficiency for a molecular beam (mass 20 a.u.) with increasing transverse
velocity spreads. Other molecular beam properties: vf = 150 m/s, δvl=50 m/s. Ne beam:
vf = 150 m/s, δvl=50 m/s, nNe = 5 × 1014cm−3. Collision angle of the cross beams is 90◦

and Ztrap center = 15 cm.

center. In the real experiment, we could move the cell such that the cell aperture sits outside

the saddle of the trap, or Ztrap center = 5 cm given by the big quadrupole trap. If we get

closer, the loaded molecule would hit the cell in the trap.

Simulation using realistic beams:

Fig. 7 shows the loading efficiency of CaH, CaF, and mass 20 a.u. beams. Here, the trap

center locates at Ztrap center = 5 cm from the cell aperture. Three molecular beams have a

vf = 150 m/s and a longitudinal temperature of 2.3 K and transverse temperature of 13 K.

As we learn from Sec. 2, the optimal collision angle would increase for heavier molecules.

Therefore, loading efficiency is calculated for different collision angles of the cross beams.

The position of the cell along the x axis, Xcell, is adjusted as well.

Discussions:

We notice that the loading efficiency for CaH beam is on the order of 10−2. We typically

produce 1011 CaH molecules in the cell per ablation pulse. Given a 10% extraction efficiency

of a single-stage cell, we can load 108 CaH molecules per pulse. Loading with multiple

pulses is unlikely to be successful since the colliding Ne beam can knock out the previously
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Figure 7: Loading efficiency vs collision angle of the cross beams. Blue, purple, and green
curves represent simulation results for CaH, CaF, and mass 20 a.u. beams. The colliding
Ne beam properties: vf = 150m/s, δvl=50 m/s, and nNe = 5× 1014cm−3.
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loaded molecules. However, this method is pretty general since only a single collision is

needed. Although the loading efficiency decreases for CaF and mass 20 a.u. molecules, we

can always load molecules with better ablation yields than CaH to increase the total loaded

number. There is one potential problem with moving the cell to the high magnetic field. At

B = 4 T, the low-field seeker has a higher Zeeman energy than the high-field seeker by 5.4

K. Although low-field seeking states can be populated in a 13 K cell, there is still plenty of

collisions in the molecular beam, which may potentially flip the spin orientation of LFS.
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