SEARCH FOR THE ELECTRIC DIPOLE MOMENT OF THE ELECTRON WITH THORIUM OXIDE

ACME collaboration

Harvard University
Yale University
University of Maryland

Y.V. Gurevich, N. Hutzler, M. Parsons, E. Petrik, B. Spaun, J. M. Doyle, G. Gabrielse
I. Kozyryev, A. C. Vutha, D. DeMille
W. C. Campbell

Why measure the electron EDM?

EDM of a fundamental particle violates both parity (P) and time-reversal (T) symmetries:

\[\varepsilon_I = (\mathbf{P} \mathbf{F}) \mathbf{I} \]

\[\varepsilon_T = (\mathbf{T} \mathbf{F}) \mathbf{I} \]

\[\varepsilon_{PT} = (\mathbf{P} \mathbf{T} \mathbf{F}) \mathbf{I} \]

T-violation in the Standard Model (SM) is not sufficient to explain the observed dominance of matter over antimatter in the universe → additional sources of T-violation (beyond the SM) must exist.

Additional T-violation in the lepton sector arises in most proposed extensions to the SM, while SM) must exist.

Optical pumping to A, which spontaneously decays to H, EDM of a fundamental particle violates both parity (P) and time-reversal (T) symmetries:

Additional T-violation in the lepton sector arises in most proposed extensions to the SM, while SM) must exist.

The molecule can be almost completely polarized by applying a small electric field \(E_{\text{eff}} \).

Parity doublets in molecules

Electronic states with non-zero angular momentum (J ≠ 0) have parity doublets (J=±1).

Parity doublets arise due to the coupling of the electronic and rotational motion.

Energy separation between J=|±1| doublet components \(\Delta \Sigma = m_J \hbar \) = 10 MHz.

Advantages of ThO

- Optical pumping is a high flux, cryogenic beam.
- Suppressed magnetic moment in the H3 state → lower sensitivity to magnetic noise and systematics.

Cryogenic ThO beam

ThO is produced by laser ablation of solid ThO2 with a pulsed Nd:YAG laser (~10 mJ/pulse, 5 ns pulse).

THO molecules are cooled to 4 K by He buffer gas and entrained in the flow of He out of the cell (6 mm x 1 mm aperture, 10 sccm He flow [4 x 1018 atoms/sec]).

The ThO beam is detected via fluorescence on the X → C transition (typical signals are shown below). Measured beam flux is \(1.5 \times 10^{12} \) molecules/s times a single quantum state. Measured beam divergence is \(\Delta x < 0.1 \mu \text{m} \).

EDM measurement with ThO

Optical pumping to A, which spontaneously decays to H, followed by depletion using x-polarized light on the H → C transition produces a coherent superposition of molecules in the J=1 rotational level of the H state: \(|0\rangle + |1\rangle + |2\rangle \).

After evolution in applied E and B-fields for time \(T \), the state is \(|J=1\rangle + |m=+1\rangle + |m=-1\rangle \), where \(f = \Delta E_{\text{mag}} + 2 \Delta E_{\text{Hor}} \). Evolution to the E state with y- or x-polarized light results in a coherent superposition of molecules in the J=1 rotational level of the H state produces a coherent superposition of molecules in the J=1 rotational level of the H state produces a coherent superposition of molecules in the J=1 rotational level of the H state produced.

Interaction region

- Transparent electric field plates (ITO-coated glass) under fabrication
- Interaction region vacuum chamber under fabrication
- Magnetic-shielding design and fabrication in progress

Laser systems and spectroscopy

- Lasers for state preparation and detection
- Digital locking system that can keep laser frequencies stable for >12hrs
- Measurements of dipole moment and g-factor for H state
- Demonstration of state preparation and detection of the accumulated phase

Current work

High flux beam source development

- Demonstrated production of atomic Yb beam with 4 K He buffer gas
- He beam studies started with Yb
- In progress

- Detailed beam studies and optimization
- Investigation of neon buffer gas
- Demonstration of high flux molecular beam

Energy shifts in J=1 level of H state

<table>
<thead>
<tr>
<th>Energy shift</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta E_{\text{mag}})</td>
<td>Magnetic moment (\mu) change</td>
</tr>
<tr>
<td>(\Delta E_{\text{Hor}})</td>
<td>Electric field (E_{\text{eff}}) change</td>
</tr>
</tbody>
</table>

Statistical sensitivity:

\[\delta_{\text{err}} = \frac{1}{2 \sqrt{N \tau}} \]

where \(N \) is the number of counts and \(\tau \) is the integration time.

H state lifetime

An exponential fit to the absorption data after the optical pumping pulse is turned off yields a lifetime of \(\tau = 1.8 \mu \text{s} \), which gives a lower bound on the H state radiative lifetime.

Optical pumping into H state

The plot at left shows absorption on the H → G transition with (orange) and without (blue) the presence of a pump beam tuned to the X → A transition.

The data shown here were taken in a buffer gas cell. We have also demonstrated optical pumping in a beam.

Acknowledgments

- I. Kozyryev, A. C. Vutha, D. DeMille
- W. C. Campbell

References

2. 4 K shield
30 cm from cell aperture,

Optical pumping to A

Use of both -doublet states enables demonstration of high flux molecular beam.

ThO can be made into a high-flux, cryogenic beam.

The large internal electric field rejection of systematic effects associated with reversal of the applied electric field.

Statistical sensitivity:

\[\delta_{\text{err}} = \frac{1}{2 \sqrt{N \tau}} \]

where \(N \) is the number of counts and \(\tau \) is the integration time.

High flux beam source development

- Demonstrated production of atomic Yb beam with 4 K He buffer gas
- He beam studies started with Yb
- In progress

- Detailed beam studies and optimization
- Investigation of neon buffer gas
- Demonstration of high flux molecular beam

Acknowledgments

- I. Kozyryev, A. C. Vutha, D. DeMille
- W. C. Campbell

References

2. 4 K shield
30 cm from cell aperture,